Chapter 9

Clock Synchronization

9.1 Slide 9/32

Theorem 9.1. No matter what clock synchronization algorithm we run, the skew between two neighboring clocks may always be $\Omega(\alpha \log \frac{\sqrt{\beta}}{\alpha} D)$, where D is the diameter of the network, hardware clocks have a rate between $1 - \varepsilon$ and $1 + \varepsilon$ (worst case), message delay is between 0 and 1 (worst case), and logical clocks must run at least at rate α, and at most at rate β. (On the slides we assumed that $\alpha = 1$.)

Proof. (Sketch) The proof is on a chain of $D + 1$ nodes $v_1, v_2, \ldots, v_{D+1}$; we set $l_0 := D$.\(^1\) Assume that the nodes run their algorithm for time $T_0 := \frac{1 + \varepsilon}{4\varepsilon} l_0 \leq \frac{l_0}{2}$, all nodes have a hardware clock rate of 1, and all messages are delayed for 1/2 time. This situation is indistinguishable for the nodes from a situation where the nodes $v_1, v_2, \ldots, v_{D+1}$ have hardware clock rates $1 + \varepsilon, 1 + \varepsilon - \varepsilon/l_0, 1 + \varepsilon - 2\varepsilon/l_0, \ldots, 1$ if we adapt message delays accordingly, i.e., “down” messages are slower than “up” messages. Since the difference between the hardware clock rates between neighbors is exactly ε/l_0 and $T_0 \leq \frac{l_0}{2}$, we need to modify the message delays by at most $\varepsilon/l_0 \cdot \frac{l_0}{2} = 1/2$, i.e., all message delays are still in the valid range of $[0, 1]$.

Since the fastest node is running $1 + \varepsilon$ times faster than in the original execution, and the executions are indistinguishable, it reaches the logical clock value that it reached at time T_0 already at time $T'_0 := \frac{l_0}{4\varepsilon}$. Since the slowest node still runs at rate 1, it reaches the same logical clock value at time T'_0 in both executions. As the fastest node increased its logical clock at least at rate α in the interval $T_0 - T'_0 = \frac{l_0}{4}$, the clock skew between the fastest and the slowest node increased by at least $\frac{\alpha}{4} l_0$ until time T'_0.

Now, in a second phase, we give the nodes time to adapt again, starting at time T'_0. Assume that the nodes continue to run their algorithm for $T_1 := \frac{\alpha(1 + \varepsilon)}{\alpha - \beta} l_0 \leq \frac{\alpha}{\beta - \alpha} l_0$ time, all nodes have a hardware clock rate of 1, and messages again take time 1/2. Since the lagging bottom node can run at most at rate β, and the top node must run at least at rate α, the clock skew between

\(^1\)The proof also works on general graphs.
\(^2\)In this short summary we will not prove this formally, but we encourage the reader to verify it with an example.
these nodes reduces by at most \((\beta - \alpha) \cdot \alpha l_0 = \frac{\alpha}{8} l_0\), i.e., the clock skew is still at least \(\frac{\alpha}{8} l_0\). Because of the pigeonhole principle there is a sub-chain of length \(l_1 := \frac{\alpha}{8} l_0\) with at clock skew of at least \(\frac{\alpha}{8} l_1\) between the top and the bottom node of the sub-chain. Note that \(T_1 = \frac{1 + \varepsilon}{2} l_1 \leq \frac{l_1}{2}\). We can again change the execution indistinguishably by setting the hardware clock rates along this subchain to \(1 + \varepsilon, 1 + \varepsilon - \varepsilon/l_1, 1 + \varepsilon - 2\varepsilon/l_1, \ldots, 1\) and adapt the message delays (which again lie in the interval \([0, 1]\)). Again, the topmost node reaches the same logical clock value at time \(T'_1 := \frac{1 + \varepsilon}{4}\) that it reached before at time \(T_1\). Due to the fact that it increased its logical clock value at least at rate \(\alpha\) in the interval \(T_1 - T'_1 = \frac{l_1}{4}\), the clock skew between the fastest and the slowest node in this sub-chain increased by at least \(\frac{\alpha}{8} l_1\), i.e., the clock skew is now at least \(\frac{\alpha}{8} l_1 + \frac{\alpha}{8} l_1 = \frac{3\alpha}{8} l_1\).

Now we repeat this process recursively for sub-chains of lengths \(l_2, l_3, \ldots\). Since \(l_{i+1}\) is a factor of \(\frac{\alpha}{4(\beta - \alpha)}\) smaller than \(l_i\), we can only do this \(\log_{\frac{\alpha}{4(\beta - \alpha)}} D\) often. However, in each of these \(\log_{\frac{\alpha}{4(\beta - \alpha)}} D\) phases, the average clock skew between the top and the bottom node of a sub-chain will grow by \(\frac{\alpha}{8}\). In other words, the skew between some neighboring nodes will be at least \(\Omega(\alpha \log_{\frac{2}{\beta - \alpha}} D)\).

\(\square\)