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Discrete Event Systems

Solution to Exercise 6

1 An Unsolvable Problem

a) It is surprisingly easy to prove that your boss is demanding too much. Assume a function
halt(P : Program) : boolean which takes a program P as a parameter and returns a boolean
value denoting whether P terminates or not.

Now consider the following program X which calls the halt() function with itself as an ar-
gument just to do the contrary:

function X(){
if (halt(X))

loop forever;
else

return;
}

Obviously, if halt(X) is true X will loop forever, and vice versa.

b) If the simulation stops we can definitively decide that the program does not contain an
endless loop. However, while the simulation is still running, we do not know whether it will
finish in the next two seconds or run forever. Put differently: There is no upper bound on
the execution time of the simulation after which we can be sure that the program contains
an endless loop.

c) As we have seen, it is not possible to predict whether a general program terminates or
not. However, under certain constraints we can solve the halting problem all the same. For
example, consider a restricted language with only one form of a loop (no recursion etc.):

for(init, end, inc){...}

where init, end and inc are constants in Z. The loop starts with the value init and adds
inc to init in every round until this sum exceeds end if end > 0 or until it falls below end
if end < 0. Obviously, there is a simple way to decide whether a program written in this
language terminates: For every loop, we check whether sgn(inc) = sgn(end), where sgn(·)
is the algebraic sign. If not, the program contains an endless loop (unless init itself already
fulfills the termination criterion which is also easy to verify).

2 Dolce Vita in Rome

Consider the following indicator variable for shop i: Xi is 1 if Hector and Rachel buy ice cream
at the i-th shop and 0 otherwise. Since the probability that the i-th shop is the best so far equals
1/i, we have E[Xi] = 1/i · 1 = 1/i.

The total number of ice crams can be expressed by

X := X1 + X2 + ... + Xn.



By using linearity of expectation, we obtain:

E[X] = E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi] =
n∑

i=1

1/i = Hn.

Here Hn is the so-called Harmonic Number, which is roughly Hn = ln(n) + O(1). Thus, the
two students roughly consume a logarithmic number of ice creams (in the total number of shops).

3 Soccer Betting

a) The following Markov chain models the different transition probabilities (W :Win, T :Tie,
L:Loss):
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b) The transition matrix P is

P =

 0.6 0.2 0.2
0.3 0.4 0.3
0.1 0.2 0.7


Since the FCB has lost its previous game, the Markov chain is currently in the state L and
hence, the initial vector is q0 = (0, 0, 1). The probability distribution q3 for the game against
the FC Zurich is therefore given by

q3 = q0 · P 3 = (0, 0, 1) ·

 0.368 0.248 0.384
0.321 0.256 0.423
0.243 0.248 0.509

 = (0.243, 0.248, 0.509).

(Note that q0 must be a row vector, not a column vector.)

Given the quotas of the exercise, the expected gains for each of the three possibilities (W ,
T , L) is

E[W ] = 0.243 · 3.5 = 0.8505
E[T ] = 0.248 · 3.5 = 0.868
E[L] = 0.509 · 2 = 1.018.

Therefore, the best choice is to bet on a loss.

c) The new Markov chain model looks like this. In addition to the three states W , T , and L,
there is now a new state LL which is reached if the team has lost twice in a row.
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The new transition matrix P is

P =


0.6 0.2 0.2 0
0.3 0.4 0.3 0
0.1 0.2 0 0.7
0.05 0.1 0 0.85

 (1)

As the FCB has (in this order) won and lost its last two games, the Markov chain is currently
in the state q0 = (0, 0, 1, 0). The probabilities for the game against the FC Zurich can again
be computed as

q3 = q0 · P 3 = (0, 0, 1, 0) ·


0.361 0.234 0.16 0.245
0.3105 0.235 0.15 0.3045
0.18175 0.1745 0.082 0.56175
0.42125 0.15475 0.061 0.6421


= (0.18175, 0.1745, 0.082, 0.5617).

Finally, we can compute the expected win for each of the three possible bets:

E[W ] = 0.18175 · 3.5 = 0.636125
E[T ] = 0.1745 · 3.5 = 0.61
E[L] = (0.082 + 0.5617) · 2 = 1.2874.

Clearly, the addition of the state LL worsens the situation for FCB.

4 The Winter Coat Problem

a) The following Markov chain models the weather situation of Robinson’s island.
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b) We need to determine the expected hitting time hSS . Using the formula of slide 35, we
obtain the following equation system:

hSS = 1 + 0.3hCS + 0.2hRS (2)
hCS = 1 + 0.1hCS + 0.2hRS (3)
hRS = 1 + 0.4hCS + 0.5hRS (4)

(2) and (3) yield that hCS = 5
6hSS , from (2) and (4) we obtain that hRS = 40

23hSS − 10
23 .

Setting these results into (2), we obtain

hSS = 1 + 0.3
(

5
6
hSS

)
+ 0.2

(
40
23

hSS −
10
23

)
Solve for hSS to obtain

hSS =
1− 2

23

1− 1
4 −

8
23

=
84
37
≈ 2.27

Thus, Mr. Robinson has to wait 2.27 days (in expectation) until having again a sunny day.

c) The modified Markov chain looks as following:
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d) We need to determine the arrival probability fSW , the probability that the weather will turn
to winter. Using the formula of slide 35, we obtain the following equation system:

fSW = 0 + 0.3fCW + 0.2fRW + 0.49fSW + 0.01fHW (5)
fCW = 0 + 0.7fSW + 0.2fRW + 0.1fCW (6)
fRW = 0.01 + 0.4fCW + 0.1fSW + 0.49fRW (7)
fHW = 0 (8)

Solving the equation system yields

fSW =
240
619

, fRW =
249
619

, fCW =
242
619

And therefore, the probability that the weather turns to winter (snowing) and Mr. Robinson
needs a winter coat is 240

619 ≈ 0.39. Note that fSH = 1− fSW = 379
619 .
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