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5 Worst-CaseEvent Systems

In mary applicationdomainseventsarenot Poissordistributed. For someapplicationst even makes
sensdo (moreor less)assumehateventsaredistributedin the worstpossibleway (e.g. in networks,
paclets often arrive in bursts). In this Sectionwe study systemsrom a worst-caseperspectie. In
particular we analyzethe price of not beingableto foreseethe future. This is a phenomenorthat
often occursin discreteevent systemgsuchasthe Internet),but alsoin our daily life. This areaof
researchs oftenreferredto asOnline Algorithms

5.1 Ski Rental

We startout with a seasonattoy example; ski rental. Imaginethatyou wantto starta newv hobby
(e.g.skiing, skateboardinghaving a boy- or girlfriend), but you don't yetknow whetheryou will like
it. Theequipmentis expensve, thereforeyou decideto first rentit afew times,beforeyou buy (or get
married!). Whendealingwith this problem,we (informally speaking)assumehatMurphy’s law will
strike: assoonasyou buy, youwill loseinterestin thesubject.Argumentdike“l rentedskis17times,
andlikeit somuchthatl will goskiingfor atleastl717moretimes”do notcountin Murphy’sworld.
Instead pnceyou buy skisyou canbe sureto meetnew friends,andthey think thatskiing is for losers,
andsnavboardingor whatever is the new hip thing.

We first radically simplify the problem(to make it mathematicallymoreelegantandtractable):

Definition 5.1 (Ski Rental) Theskirentalproblemconsistsof two values:

e Input: a real numberu, representinghe time a skierwill endup skiing (v > 0), chosenby
anadvesary.

e Algorithm: a real numberz, at which the algorithmwill stoprentingskis,andinsteadbuys
skisfor price 1.

Remarks:

e Thealgorithmdoesnotknow theinputu.

e Thealgorithmis representedly a singlevalue. Thisis ratherunusual.
Thecostof thealgorithmwith valuez oninputw is cost, (u):

u ifu<z
cost(u) = z+1 ifu>z

Thegoalis to developanalgorithmz thatis goodfor anyinputw«. We comparehecostof thealgorithm
with the costof anoptimal clairvoyant(“offline”) algorithm:

i <
Ot opy (1) = { 11‘ :; Z . 1 } = min(u, 1).

Definition 5.2 (Competitive Analysis) Anonlinealgorithm A is c-competitivef for all finiteinput
sequence$
costa(I) < c- costop(I) + k,

whete cost is the costfunctionof the algorithm A and the optimal offline algorithm, respectively
andk is a constantindependenof theinput. If &£ = 0, thenthe onlinealgorithmis called strictly
c-competitive

Theorem 5.3 Skirentalis strictly 2-competitive Thebestalgorithmis z = 1.
Proof. Whenlooking at strictly competitive ski rentalalgorithms we canequivalently askfor
cost,(u)
coStop(u) ~

Let usinvestigatez = 1 in theski rentalalgorithm.Then,

cost ,(u)

oSt op (1)

Cases u<z=1|u>z=1

u<l1 u impossible

u
u > 1 | impossible n

Thus,theworstcaseis u > z = 1, andthe competitve ratiois 2.
Is this optimal?
e Let'stry z > 1: In this casethe adwersarymight/will chooseu = z + ¢. Then,thecostratiois

205t (1 1
cost,(u) _ ozt Y
oSt o (1) 1

e If z < 1 thenthe adwersarywill chooseu betweenz and 1, closerto z, for exampleu =
(9z +1)/10. Then
cost,(u) z+1 z 1

= =—4—->2.
oSt op (1) u uoou

Remark:

e Everythingsolved?!? It seemghatthe algorithmhasa big handicap.We assumehat the ad-
versaryknows every bit aboutthe algorithm (similar to the modelsusedin cryptograply). The
adwersarycanalwayspresentninput whichis worst-casedor the algorithm. The only hopefor
thealgorithmis to make randomdecisionsandthusmake the gameharderfor theadversary
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5.2 RandomizedSki Rental

Let'slook atanalgorithm A thatchoosesandomlybetweertwo values,z; andz, (with z; < 25), with
probabilitiesp; andp, = 1 — p;. Then,

u ifu<z
costa(u) =< pr-(z1+1)+p2-u if 21 <u <2

pro(zi+1)4+pe-(2+1) fzm<u
Theadwersarybeingvery evil, will still choose thevorstpossibleinputs. Corvinceyourselfthatonly
u; = 21 + € anduy = 2o + € aresensible.Sincethe adwersarydoesnot seethe randomcoin flip of
the algorithm, it aswell hasto chooseits inputsrandomly with probabilitiesq; andqg., respectiely.
Thesituationis equivalentto gametheory— if you’re ambitiousyou might wantto computethe Nash
equilibriumfor this game...
For the sale of simplicity, we will assigrthealgorithmthevalues

Z1 = 1/2722 = 17p1 = 2/5*p2 = 3/5

We have cost 4 =
cost 5 D1 J 2
¢ z1+1 Uq
Q2 2n+1|2+1
In short,

costy = pl(zl + 1) +p2(q1u1 + QQ(ZQ + 1))
Usingthevaluesfrom above,

9
costy = -+ —(q1/2 4+ 2¢3) = 5(1 - q1/2).

ot W
ot W

ANd, costop =

COStUpt p1 | P2

q1 Uy | Uy
q2 Uz | U2

Hence,
CoStopt = q1-1/2+q2-1=1—q1 /2.

Therefore,
costa 9

cOStopt 5
In otherwords, for this particularrandomizedalgorithm, the expectedcompetitive ratio is 1.8 only,
below the bestpossibledeterministicalgorithm. Mind, however, thatthis new boundis in expectation
only!
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Uninteresting for Adv:
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Figurel: Choosingmorethantwo values

Maybe one cando evenbetterby allowing the algorithmto choosemorethantwo values... Maybe
eveninfinitely mary values?!?Thescenarids in Figurel.

Then,the expectedcompetitve ratio is

1 1 pu 1
E[c]:§+/ / 2t dzdu = ... =1.75.
o Jo

u

Wasthatavalid algumentWhy yes,why no?

We assumedhatthe adwersarychooses: with uniform distribution. This is not OK. In this specific
example,anadwersarycancausemuchmoreharmby choosingvaluescloseto 1. In addition,it was
notcorrectto sumup theratiosof the costs insteadwe shouldcomputetheratio of theexpectedcosts.

Insteadwe shouldrathersolve

Bl = I3 iz 4+ Dp(2)d(w)dzdu + [} [} up(z)d(u)dzdu

e Jo I up(z)d(u)dzdu
wherep(z) is the probability distribution of the algorithm,andd(u) is the probability distribution of
the adwersary with [p(z) = [d(u) = 1. Theadwersarychoosests distribution d(u) such thatit
maximizesthe expectedcompetitve ratio £[c|, andthe algorithmchoosests distribution p(z) such
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thatit minimizesE|c].

Thisis avery hardtask. However, we cantackleit by makingthe problemindependenof the adwer-
sarialdistribution. How doesthis work?!?

Theideais asfollows: if the adwersarychooses valueu with v < 1 thenit occursanoptimal cost

costo,(u) = w. If we wantour algorithmto be strictly c-competitive, all we have to do is to incur

a costlessthanc - v whenbeing offeredinput u, for all u. In otherwords, we have to choose the
algorithm’ probabilityfunctionp(z) such thatost4(u) < ¢ - u.

Recallthatthealgorithm’ costis

m if u<z
cost.(u) = { 1l fu>z v

Again, it seemsaturalto restrictthe algorithmto valuesbetween) and 1. Also the adwersarycan
restrictitself to valuesbetweern) and1, becauseif a valuehigherthan1 is presentedthe adversary
andthealgorithminfer exactly thesamecostasif thevaluel waspresentedTherefore,

- 1 1
/ (z+ D)p(z)dz + / u-p(z)dz < ¢-u, with / p(z)dz = 1.
0 u 0

Having a hunchthatthe bestprobability functionwill probablybe anequality we immediatelytry

/U'“(Z + 1)p(2)dz + u[ylp(z)dz =c-u, With /Olp(z)dz =1.

We first differentiatewith respecto «, getting

(u+1)p +/ 2)dz +u- (—p(u +/

We aguin differentiatewith respecto u, andget

)y =00 B )

That's oneof thefew differentialequationsverybodyknows:

p(u) = a- et

In orderto reveal o we use [ p(z)dz = 1:

1 1
1z/acd7—a(e - =a= .
Jo e—1
In otherwords,p(u) = 5. Weinsertp(u) into thefirst differentiation:
)+ / N el —ev e
dz = = .
-1 e—1 e—1

Notethatalsofor inputsu > 1 thelnequalltycostA(u) ¢+ costop(u) = ¢+ 1 holds.

Theorem5.4 In otherwords,with p(z) =
tation.

—%-competitivein expec-

Remark:

e Thebig questiorremains:Canwe getary better?!?

5.3 Lower Bounds

Time to think aboutlower bounds.Lower boundsfor randomizedalgorithmsoften usethe Von Neu-
mann/ Yao Principle,which we stateandusewithout proof:

Theorem5.5(Von Neumann/ Yao Principle) Choosea distribution over probleminstancegfor
skirental,e.g. d(u)). If for this distribution all deterministicalgorithmscostat leastc, thenc is a

lower boundfor the bestpossiblerandomizedilgorithm.

For ski rentalwe arein the lucky situationthatwe caneasily parameterizell possibledeterministic
algorithmsby = > 0. Now we have to choosea distribution of inputs,with d(u) > 0 and [ d(u) =
For example,d(u) = 1/2for0 < u < 1 andd(*o0”) = 1/2.

Examplealgorithms:

e > = 0 (immediatebuy): incursa constantcost1 for all possibleinput distributions: Therefore
cost,—o(d(u)) = 1.

e 2 = 1 (worst-casaleterministicalgorithm):incursthesamecostasthe optimaloffline algorithm
for smallu but cost2 for u = co which happensvith probability 1/2; whensummingupwe see
thatcost,—1(d(u)) = 5/4.

More formally, the costof the optimal offline algorithmis

1/ 1 3
costop(d(u)) = 3 ./o udu + 3 1= T

For generalz < 1 thecostof thealgorithmis

1 2 1 1
cost, = 5 (/ udu+/ (z+1)du) +§(Z+1)
JO Jz

1 (22 z 22
= —| — —Z z = —— —>1.
2<2+(z+1)(1 7)+(7+1)> 1+2 4_1

For general: > 1 thecostof thealgorithmis

1 /1 1 1 1
cost, = 5/0 udu + Q('Z +1)=-+ Z;r

1 > 5/4.

Using cost,p(d(u)) = 3/4 we concludethatthe competitie ratio ¢ is atleast4/3 = 1.33.
Remarks:
o Notethatfor distribution d(u) indeedz = 0 is the bestalgorithm.

e Thelowerboundof 1.33 andtheupperboundof 1.58 do notmatch.



e As amuedabove, theimmediatebuy algorithmis worstwith very smallu. In orderto make our
lower boundstrongerit could thereforebe beneficialto tunethe input distribution such thatit
containsmoresmallu values.

e Guessingheright input distribution is indeedhard. However, similarly to the upperbound,it
canbe derived using differential equations. The worst input distribution is d(u) = 1/e*, for
0<wu<1,andd(*oc”) = 1/e.

o Next, let us study someonline problemsin the Internet(“Web”) context. We will discover
surprisingconnectiongo ski rental.

5.4 The TCP AcknowledgementProblem
TPCis alayer4 networking protocolof theInternet.It featuresamongotherthings:

e An error handling mechanismwhich tacklestransmissiorerrors and disorderingof paclets,
usingsequenc@umbersaandacknavlegdements.

o A “friendly” exponentialslow startmechanisnsuch thainew connectionsio not overloadthe
network.

e Flow Control: A slidingwindow sender/receer buffer thatsimplifieshandlingandpreventsthe
recever buffer from overload.

e CongestiorControl: A bacloff mechanisnthatshouldpreventnetwork overloading.

In this first part we study the TCP AcknowledgementProblem. We study a single sender/recegr
pair, wherethe sendersendspaclets andthe receiver acknavliedgesthem (without sendingpaclets

itself). Thereareseveral TCPimplementationswvailable,with variousacknavledgement-procedures.

In orderto save resourcesno implementationsendsacknavledgementsight away.* Insteadthese
implementationsendcumulatve acknavledgementg“l receved all pacletsup to paclet x”). This
mechanisnis the subjectof this subsection.

At therecever side,thesituationlookslike in Figure2.

Definition 5.6 (TCP AcknowledgementProblem) Thereceivers goalis a schemewhich minimizes
the numberof acknowledgmentplusthe sumof thelatenciesfor eac padet, where thelatencyof a
padetis thetimedifferencefromarrival to acknowledgment.More formally, we have

e n padetarrivals, attimes:ay, as, ..., a,
e i acknowledgmentsattimes:ty, to, ..., ¢

¢ Andwewantto minimize:

n
mink + Y _ latency(i), with latency(i) = t; — a;, wher j sudthatt;_; < a; < t;.
i=1

10oneversionof Solaris,for example,alwayswaits 50msbeforeacknavledgingin orderto supportmultiple acknavl-
edgementsn a singlemessageln oneversionof BSD, TCP-Ack hasa 200msheartbeatandacknavledgesall paclets
recevedsofar.

A Received packets

Packs
Acks

ﬁ time

Figure2: TCPACK problem

Remarks:
e Notethatin Figure2 thetotal lateng is exactly theareabetweerthetwo curves.

e Clearly, we arecomparingappleswith orangesvhencomparingthe numberof acknavliedge-
mentswith thesumof latencies However, whenscalingthetime accordingly this shouldnotbe
abig problem.

e Thereare quite a few technicalexceptions. In mary implementationssignaling paclets are
usually acknavledgedfaster(e.g. SYN, FIN); also TCP standardwantsimplementationgo
acknavledgepacletswithin 500ms.Sincethereceveris usuallyalsosenderit mightalsodelay
its own sendingpaclets.

e In ourstudieswe do notlearnthefuturefrom the past.A machindearningapproactcouldgive
atotally differentperspectie.

Algorithm 5.7 (z = 1 Algorithm) Thez = 1 algorithmis sketchedin Figure 3. Wheneer a rec-
tanglewith area = = 1 doesfit betweerthe two curves,the receiversendsan acknowledgment,
adknowledgingall previouspadeets.

Lemma 5.8 Theoptimalalgorithmsendsan ACK betweeranypair of consecutivéCKsby algorithm
with z = 1.

Proof. For the sale of contradiction,assumehat, amongall algorithmswho achiese the minimum
possiblecost,thereis no algorithmwhich sendsan ACK betweerntwo ACKs of the z = 1 algorithm.
We proposeto sendanadditionalACK atthe beginning (left side)of eachz = 1 rectangle Sincethis
ACK saveslateny 1, it compensatethe costof the extra ACK. Thatis, thereis anoptimalalgorithm
who chooseshis extra ACK. mn

Theorem5.9 Thez = 1 algorithmis 2-competitive
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A Received packets

cost,—y = k,—1 + latency,—;
- < kot + latencyoy + latency(z = 1 without opt)
< kopt + latencyop + kopr - 1
= 2 ko + latencyop < 2 - costop
—
I
Packs| | ~ m
Remarks:
Alg
7=1 time e |t's no coincidencehatwe calledthe algorithmz = 1. Similarly to ski rental,it is possibleto
chooseary z. In fact,if you really think aboutit, the TCP ACK problemis in factvery much

like ski rental! Indeed,if you wait for arectangleof sizez with probabilityp(z) = -<-, youend

e—1"

upwith arandomizedl CP ACK solutionwhichis -4 competitize in expectation.

Figure3: Thez = 1 algorithm
e Many otherproblemsarealsojust like ski rental! That's why we studiedit in the first place.
E.g. theHalbtax-Problenforiginally known asthe Bahncardoroblem).Buying a Halbtax-Card

whichreducesachtrip by 3 is —{; competitize.

Proof. We have cost,p = kopt + latencyoy, andcost,—; = k,—y + latency,—;.
Sincethe optimal algorithm sendsat leastone ACK betweenary two consecutie ACKs of A,_;
(previousLemma) we know k.1 < kop.

5.5 The TCP CongestionControl Problem

A Received packets As a next examplewe studythe senderside of TCP. We ask: How mary segments(or paclets, or

— bytes)persecondcana senderinject into the network without overloadingit? The problemis thata
1 senderdoesnot know the currentbandwidthbetweentself andthe recever. And, moreimportantly
this bandwidthmight changeover time with otherconnectionstartingup, or closingdown.

Here’s our model:

Packs

opt e Wedivide thetimeinto periods(or slots).

e In eachperiodt thereis anunknowvn thresholdu,, whereu; is the numberof paclets (or seg-
z=1 ments,or bytes)that could successfullybe transmittedfrom senderto recever, without over-

— . loadingthe network.
time

o In periodt, thesendeichoosedo transmitz, paclets.

o If 2, < u;, wearefine. However, sendingattoo conserative or smallratesr; < u; is awasteof
theavailablebandwidth.Onepossibleway to capturethis aspectvould beto useanopportunity
costfunctionof theform cost; = u; — ;.

Figure4: A,_, vs.theoptimalalgorithm

Also, by definition (seeFigure4),
e If x; > u;, we arenot fine. We are overloadingthe channel. Thereare several costmodels
) possible. In a severe costmodel, nothing getstransmitted(cost; = wu;), in alesssevere cost
< latencyoy + latency(z = 1 withoutopt). model,somefractionof the pacletsmight getdropped(e.g. cost, = a(z; — u)).

latency,—, latencyoy + latency(z = 1 withoutopt) — latency(opt without z = 1)

A

Usinglatency(z = 1 withoutopt) < k. - 1 (if ary of theserectanglesvereof sizel or larger, A.—,
would have ACKedearlier)we get:



5.6 The Static Model

We start out with the simplestpossiblemodel, wherethe bandwidthis constantover time, that is,
uy = u. Theproblemis thento find the correctbandwidthu (with somethindik e binarysearch)pnce
thesendeffoundthecorrectbandwidth therewill beno morecost. We assuméirst thatw is aninteger,
andthat1l < u < n, thatis, thereis anupperboundn for the bandwidth.

Possiblealgorithms:

e Plainold binarysearcmeeddog n searctsteps.For aworst-casehoiceof « thealgorithmwill
ofteninject too mary paclets,and(in a severecostmodel) have costu = ©(n) in moststeps,
thusthetotal costis ©(nlogn).

A standardT CP congestioncontrol mechanisiis usually following the AIMD (Additive In-
creaseMultiplicative Decreaseparadigm:Once TCP sendsso mary pacletsthatthe network
becomesoverloaded,routerswill startdropping paclets. The sendercan witnessthis (with
missingACKs), andconsequentlylecreaseis transmissiorrate (for examplein a multiplica-
tive way, e.g.,by afactor2). Thenthe senderstartsincreasingts transmissiorrate again, but
slowly, to approactthe “right” bandwidthagain (for exampleby 1, in anadditive way). In our
model,if therealbandwidthis u = n — 1, suchanalgorithmwill clearly be very muchoff the
right bandwidthu mostof thetime. Sinceapproaching. takes©(n) steps,andin the severe
costmodelmoststepscostu — x; = O(n), thecostof the AIMD algorithmis ©(n?).

e Theobviousquestion:Canwe do better?!?

Algorithm 5.10(Shrink) Thealgorithm operateson a pinning interval [¢, j], originally [i, j] =
[1,n]. Thealgorithmhastwo phases:

e Phasel: Find theright powerof-two-upperbound,thatis, find j sud that2* < j < 2k+1
bytesting2* + 1. If 2F + 1 < u gotophase2, elseset][i, j] = [1, 2*] andstayin phasel.

e Phase2: Weare given(i, j] with 271 + 1 <4 < j < 2!, Nowwetest

2t
1 + max <1, W)

with m beingthelargestinteger sudthat j — i < Zf—t Thenadapt[i, j] accodingly.

Remarks:
e It canbeshown thatthe costof the Shrinkalgorithmis O(n loglogn).

e Forlargen, it is remarkablghatthevastmajority of increasestepsareincrementsy just1. And
almostall decreasstepsaresubstantialln otherwords,thealgorithmis anAIMD algorithm.

e If n is notknown, we canfind anupperboundof u quickly by a repeatedsquaringtechnique
first, thatis, test2, then2? = 4, then4? = 16, then162 = 256, . . .. It canbeshavn thatthetotal
costis O(ulog log ).

11

e Thereis alower boundof O(uloglog u/ logloglog u). Hencethe Shrink algorithmis asymp-
totically almostoptimal.

e However, this wasonly an warm-upexample. What we arereally interestedn are dynamic
models.

5.7 The Dynamic Model

In this section the thresholdmay vary from stepto step,i.e., the adwersarychooses sequence u; }.
Thereby the adwersaryknows the algorithms sequence z, } of probes/testin adwance.Clearly, we
areagpinin therealmof onlinealgorithmsandcompetitve analysis.

We have postulatedhatcost 4,4(1) < c- cost,p (I). Obsenethatanoptimaloffline algorithmknowing
theinput (asin ski rentalor TCP ACK) canalwaysplay z;, = u,, whichimpliesthatcost,,, = 0. No
onlinealgorithmcanbe competitize!

For this reasonit seemsmore fruitful to look at gain (or profit) ratherthan cost. We updateour
definitionfrom ski rentalasfollows:

Definition 5.11(Competitive Analysis) An online algorithm A is strictly c-competitivef for all
finite inputsequence$

cost (1)
c-gaing(I)

¢ costop(I), OF
gaing ().

IV IA

Remark:
e Notethatin bothcases: > 1. Theclosercisto 1, thebetteris analgorithm.
For aseverecostmodel,a naturaldefinitionof gain couldlook asfollows:

. z, fz, <uw
i) = { 7 A

However, notethatour adwersaryis too strongbecauséknowing the algorithm)it canalwayspresent
anu, <z, (or, if , = 0, ary u;). Thetotal gain of the algorithm(givenas_, gain a;,(t)) is 0. We
thereforeneedto furtherrestrictthe power of theadwersary Seweralrestrictionsseento bereasonable
andinteresting:

o Bandwidthin afixedintenal: u; € [a, b]

e Multiplicatively (or additively) changingoandwidth:u, /i < w;q < po-uy (Orup — a0 < wpyy <
us + @)

e Changewith bursts

In thefollowing, thethreerestrictionswill bestudiedin turn.
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5.8 Bandwidth in a Fixed Interval

We startout by letting the adversarychooseu; € [a, b]. Thealgorithmis awareof the upperboundb
andthe lower bounda. We first restrictoursehesto deterministicalgorithms. In this case,notethe
following:

o If thedeterministicalgorithmplaysz; > a in round¢, thentheadwersaryplaysu; = a.

e Thereforethealgorithmmustplay z; = a in eachroundin orderto have atleastgain = a.
e Theadwersaryknows this,andwill thereforeplay u; = b

o Thereforegain ., = a, gaing, = b, competitveratioc = b/a.

As usually we askwhetherrandomizatiormight help! Let’s try the ski rentaltrick immediately! In
particular for all possibleinputsu € [a, b] we want thesamecompetitve ratio:

¢ gainag(u) = gaing(u) = u.

¢ Fromthedeterministiccasewe know thatit might make senseo treatthecaser = a individually. (If
we do not, thenthe probability to chooser = a will beinfinitesimally small,andthe adwersaryonly
needdo present: = a + € all thetime, andour algorithmis in troublesinceit never makesary gain.)

Algorithm 5.12 We chooser = a with probability p,, andanyvaluein x € (a, b] with probability
densityfunctionp(z), with p, + [° p(z)dz = 1.

Theorem5.13 Theee is an algorithmthatis c-competitivewithc = 1 + In g “In” beingthe natural
logarithm.

Proof. Settingup the ski rentaltrick, we have
c- <pa~a+ /up(ac) -zdx) =u.

Thenwe differentiatewith respecto u, andget,

0 1
a—c-p(u)-u—lzﬂa(u) =
We plug this backinto thedifferentialequationandget
c- <pa-a+_/u£dx> =cpaa+ (u—a)=u=alcp,—1)=0=p, =1/c.
a CIT
To figureout ¢, we usethatall probabilitiesmustsumupto 1:

b 1 101
1:pa+/p(x)dx:7+7/7d17$1+lnbflna:c.
Ja c CJa T

Whataboutthelower bound?We usethe Von Neumann' YaoPrinciple:

13

Theorem5.14 Theris norandomizedilgorithmwhich is betterthanc-competitivewith ¢ = 1+1n g

Proof. Letalittle fairy tell ustherightinputdistribution: We choose» with probability p, = a/b, and
selectu € [a, b) with probabilitydensityp(u) = a/u?. Theinputis OK because

b q a b1 a -1 -1
S u=-4a| —du== ) =1
prr/a u2du b+a/¢zu?du b+a<b a>

Thegain of the optimalalgorithmon thisinputis:

b b b1
gaingp,,:b-prr/ u-p(u)du:b%Jr/ u-%du:aJra/ —du = a(1 +1n(b/a)).
a a u a U

Thegain of adeterministicalgorithmchoosingr onthisinputis:

. +/” (u)d a+ /bld (1+(—1 —1))
AlMy = T - xZ - u)au = r— axr —au = axr(— —_ = = a.
g P P p b r u? b b T
Hence,
i 141
g opt _ a1 + In(b/a)) =1+1In(b/a).
gain, a
M
Remarks:

e Great,upperandlower boundaretight!

e Didn’'t we askfor u, x beingintegers?In thiscasec = 1 + H, — H,, whereH,, is theharmonic
numbern definedasH,, = -7, 1/i =~ Inn.

o Now let’'sturnto themorerealisticcasesvherethe bandwidthsmoothlychange®ver time, and
doesnotjump up anddown like crazy

5.9 Multiplicati vely Changing Bandwidth

Now theadversarymustchooseu, such thaty /i < w1 < p - up. Thealgorithmknows themaximal
possiblechangeactoru. perperiod. We assumehatthe algorithmalsoknows theinitial thresholdu; .
Think of i asbeinga valuesuch thathe bandwidthchanges few percentonly perperiod.

If the adversarykeepsraisingu asfastaspossible(u;.; = u - u; for severalrounds),thenit seems
reasonabl¢hatthealgorithmdoesthe same.In particular if thealgorithmchooses:;, 1 = (1 — €)ua:

then

lim Y _ " =00

tmoo g, (L—e)t-pt
Therefore,if therewasa successfutransmissiorin period¢, the algorithmchooses;,; = pz;. On
the otherhand,if =, wasnot successfulg;,; = \z,. Wewill set\ = 1/, Theideais thatat least

every otherroundis successful.

Lemma 5.15 After a non-successfubundthere is alwaysa successfutound.
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Proof. Sincewe know u,, thealgorithmcanchooser; = u;, andhave asuccessOurinvariantis that
every non-successfuloundis followed by a successfutound. Assume for the sale of contradiction,
thatroundt + 1 is thefirst non-successfuloundwhich follows aftera non-successfuloundt¢, which
(by inductionhypothesis¥ollows asuccessfutoundt — 1 (notethatx;_; < u;—;). Sinceu; > w1/
for all t we have u;; > u;_1/p?. Ontheotherhand,we have z,,;, = A1y = Az = 21 /1%
Therefore,
Tepr = Ty /i < wey /1 < g,

henceroundt + 1 is a success.We have acontradiction,which provesthattherecanbe only one
non-successfuoundin arow. mn

Lemma 5.16 A successfuloundis ;*-competitive

Proof.

o If asuccessfutoundt + 1 follows a successfutoundt, roundt + 1 is atleastascompetitve as
roundt sincethealgorithmsetz, , = uy.

e |f asuccessfutoundt + 1 follows a non-successfuloundt (u; < z;), then,sincex;,; = Az,
andu;,; < pu; we have

Lo = ATy > My > Muggr /pt = gy /1

Theorem5.17 Thealgorithmis (;* + u)-competitive

Proof. In anon-successfuyffail”) roundt, it holdsthatu, < ux; 1, because;_; < u;_; (cf. Lemma
5.15),z; = pxs_ anduy < pxs_i. Thus

Gainep (suce) 4+ gaing( fail) - ph - gainag(suce) + p - gainag(suce)

i o : = ;ﬁ + p.
gain ag(succ) gain ag(succ)

O

While this algorithmis goodfor small i, the competitive ratio grows quickly for larger .. In the
following, we shaw that an algorithmwhich increaseghe bandwidthby a factor i after successful
roundsandhalvestherateafternon-successfuioundsis 4,.-competitie.

Theorem 5.18 Thisnew algorithmis 4u-competitive

Proof. First, we showv by inductionthatin eachsuccessfubr goodroundt, u; < 2uz;. Fort = 1,

u; = x; andtheclaim holds. For theinductionstep,considertheroundt — 1 beforethe goodround

t. Therearetwo possibilities: eitherround¢ — 1 wasnon-successfubr bad (z;_, > u;_,), or good

(x4—1 < ug—q). If roundt — 1 wasbad,we have z; = z;_1/2 andu; < w1y < x4 = 2uzy, hence
us/xe < 2, andtheclaim holds. If onthe otherhandroundt — 1 wasgood,the algorithmincreases
the bandwidthat leastas much asthe adwersary Togetherwith the induction hypothesisthe claim

follows alsoin this case.
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Having studiedthe gain in goodrounds,we now considerbadrounds. We show thatin the bad
roundsfollowing a goodroundt, the adwersarymayincreasets gain at mostby 2..2;. Solett bethe
goodroundprecedinga sequencef badrounds,t.e.,z; < w;, Ty > Uppr, Tepo > Uy, €1C. We
know thatz, . ; = px;, so—becausé is a badround—u,.; mustbelessthanux,. Further we have
Tprg = Tp1/2 = pa/2 andhenceuy, o < pxy/2, x403 = pxy/4 andhenceuy, s < pa,/8, etc. By a
geometricseriesargumentthe gain of thead\ersaryin the badroundsis upperboundedy 2.z,

Therefore,

Gainep (suce) + gaingy( fail)
gain ag(suce)

20 - gainag(suce) + 24 - gain ay(succe)

gain ag(succ)
< 4p.

5.10 Changeswith Bursts

In theprevioussectionwe assumedhatthebandwidthchange$®y atmostagivenconstanpercentage
u over time. However, onecanimaginethatin the real Internettheremay be quiettimeswherethe
congestiorlevel hardly changesandtimeswherethereare very abruptor bursty changes.In main
objective of this sectionis to present—withoutiry analyses—aadwersarymodelwhichincorporates
suchanotionof bursts.Our modelis basedn conceptof networkcalculus atool whichis typically
usedto studyqueuingsystemgrom aworst-caseperspectie.

TheburstyadwersaryADV,,. hastwo parametersA rate; > 1 andmaximunburstfactor B > 1.
In every round,the availablebandwidthu, mayvary accordingto theseparameterén a multiplicative
manner More precisely ADV,,. may selectthe new bandwidthu, ., from theinterval

ADV,e : ugsq € [[;L; ug - B+,
¢

thatis, the availablebandwidthmay changeby a factorof atmost ;... Thereby (3, is the burst factor
attimet. Thisburstfactoris explainednext.

On average the available bandwidthcanchangeby a factory perround. However, theremay be
times of only small changeshut thenthe bandwidthmight changeby factorslarger than . in later
rounds. This is modeledwith the burstfactor 3,, which is definedasfollows. At the beginning, 5,
equalsB, i.e., 3; = B. Fort > 1, theburstfactor 3, is computeddependingon 3,_; andthe actual
bandwidthchange;_; thathashappenedn roundt — 1. More precisely

B, = min{ B, 3;_1 L}
Ct—1

wherec; := “;—jl if uzy > u; and “;’jl otherwise.This meanghatif the availablebandwidthchanged
by afactorlessthany in roundt, i.e., ¢; < u, theburstfactorincreasedby afactor%, andhencethe
bandwidthcanchangemorein the next round,andvice versaif ¢; > .

Therefore the adwersaryis allowed to save adwersarialpower for forthcomingrounds. However,
thisamortizationis limited as3; canneverbecomdargerthan B for all roundst. Also notethatg; > 1

alwaysholds,because; < i3, by thedefinitionof ADV,,..
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Figure5: Visualizationof ADV,,. for thecasevt : u;11 > u:. Thebandwidthmayincreasenultiplicatively in
every round,but it mustnever exceedthe constraintdrom previousrounds(dashedines).

bandwidthmay rise by a factorof ;B in every round, unlessit conflicts with a constraintfrom a
previousround,i.e., V¢ : u; < minjeqr —13{u¢ - B - p'7'}.

In orderto analyzesuchbursty adwersariessimilar techniquesasthosepresentedn Section5.9
canbeapplied;we do not performthesecomputationsere.

Figure5 visualizesADYV,,. for the casevt : w1 > uy, i.€., for increasingopandwidthonly: The

17



