
DiscreteEventSystems
RogerWattenhofer

5 Worst-CaseEvent Systems

In many applicationdomainseventsarenot Poissondistributed.For someapplicationsit evenmakes
senseto (moreor less)assumethateventsaredistributedin theworstpossibleway (e.g. in networks,
packetsoften arrive in bursts). In this Sectionwe studysystemsfrom a worst-caseperspective. In
particular, we analyzethe price of not beingable to foreseethe future. This is a phenomenonthat
often occursin discreteevent systems(suchasthe Internet),but alsoin our daily life. This areaof
researchis oftenreferredto asOnlineAlgorithms.

5.1 Ski Rental

We startout with a seasonal“toy example,” ski rental. Imaginethat you want to starta new hobby
(e.g.skiing,skateboarding,having a boy- or girlfriend), but you don’t yet know whetheryou will like
it. Theequipmentis expensive, thereforeyoudecideto first rentit a few times,beforeyoubuy (or get
married!).Whendealingwith this problem,we (informally speaking)assumethatMurphy’s law will
strike: assoonasyoubuy, youwill loseinterestin thesubject.Argumentslike“I rentedskis17 times,
andlike it somuchthatI will goskiing for at least1717moretimes”donotcountin Murphy’sworld.
Instead,onceyoubuyskisyoucanbesureto meetnew friends,andthey think thatskiing is for losers,
andsnowboardingor whatever is thenew hip thing.

Wefirst radicallysimplify theproblem(to make it mathematicallymoreelegantandtractable):

Definition 5.1(Ski Rental) Theski rentalproblemconsistsof twovalues:

• Input: a real numberu, representingthe timea skierwill endup skiing(u ≥ 0), chosenby
anadversary.

• Algorithm: a real numberz, at which thealgorithmwill stoprentingskis,and insteadbuys
skisfor price1.

Remarks:

• Thealgorithmdoesnot know theinputu.

• Thealgorithmis representedby asinglevalue.This is ratherunusual.

Thecostof thealgorithmwith valuez on inputu is costz(u):

costz(u) =

{

u if u ≤ z
z + 1 if u > z

Thegoalis to developanalgorithmz thatis goodfor anyinputu. Wecomparethecostof thealgorithm
with thecostof anoptimalclairvoyant(“offline”) algorithm:

1

costopt(u) =

{

u if u ≤ 1
1 if u > 1

}

= min(u, 1).

Definition 5.2(CompetitiveAnalysis) AnonlinealgorithmA is c-competitiveif for all finiteinput
sequencesI

costA(I) ≤ c · costopt(I) + k,

where cost is thecostfunctionof thealgorithmA and theoptimaloffline algorithm,respectively,
andk is a constantindependentof the input. If k = 0, thentheonlinealgorithmis called strictly
c-competitive.

Theorem5.3 Skirentalis strictly 2-competitive. Thebestalgorithmis z = 1.

Proof. Whenlookingat strictly competitiveski rentalalgorithms,wecanequivalentlyaskfor

costz(u)

costopt(u)
≤ c

Let usinvestigatez = 1 in theski rentalalgorithm.Then,

costz(u)

costopt(u)
=

Cases u ≤ z = 1 u > z = 1

u ≤ 1 u
u

impossible
u > 1 impossible 1+1

1

Thus,theworstcaseis u > z = 1, andthecompetitive ratio is 2.

Is thisoptimal?

• Let’s try z > 1: In this casetheadversarymight/will chooseu = z + ǫ. Then,thecostratio is

costz(u)

costopt(u)
=

z + 1

1
> 2.

• If z < 1 then the adversarywill chooseu betweenz and 1, closer to z, for exampleu =
(9z + 1)/10. Then

costz(u)

costopt(u)
=

z + 1

u
=

z

u
+

1

u
> 2.

⊓⊓

Remark:

• Everythingsolved?!? It seemsthat the algorithmhasa big handicap.We assumethat the ad-
versaryknows every bit aboutthealgorithm(similar to themodelsusedin cryptography). The
adversarycanalwayspresentaninput which is worst-casefor thealgorithm.Theonly hopefor
thealgorithmis to make randomdecisions,andthusmake thegameharderfor theadversary.

2



5.2 RandomizedSki Rental

Let’s look atanalgorithmA thatchoosesrandomlybetweentwo values,z1 andz2 (with z1 < z2), with
probabilitiesp1 andp2 = 1 − p1. Then,

costA(u) =











u if u ≤ z1

p1 · (z1 + 1) + p2 · u if z1 < u ≤ z2

p1 · (z1 + 1) + p2 · (z2 + 1) if z2 < u

Theadversary, beingveryevil, will still choose theworstpossibleinputs.Convinceyourselfthatonly
u1 = z1 + ǫ andu2 = z2 + ǫ aresensible.Sincetheadversarydoesnot seethe randomcoin flip of
thealgorithm,it aswell hasto chooseits inputsrandomly, with probabilitiesq1 andq2, respectively.
Thesituationis equivalentto gametheory– if you’re ambitiousyou might wantto computetheNash
equilibriumfor thisgame...
For thesakeof simplicity, wewill assignthealgorithmthevalues

z1 = 1/2, z2 = 1, p1 = 2/5, p2 = 3/5.

Wehave costA =

costA p1 p2

q1 z1 + 1 u1

q2 z1 + 1 z2 + 1

In short,
costA = p1(z1 + 1) + p2(q1u1 + q2(z2 + 1)).

Usingthevaluesfrom above,

costA =
3

5
+

3

5
(q1/2 + 2q2) =

9

5
(1 − q1/2).

And, costopt =

costopt p1 p2

q1 u1 u1

q2 u2 u2

Hence,
costopt = q1 · 1/2 + q2 · 1 = 1 − q1/2.

Therefore,
costA
costopt

=
9

5
.

In otherwords,for this particularrandomizedalgorithm,the expectedcompetitive ratio is 1.8 only,
below thebestpossibledeterministicalgorithm.Mind, however, thatthis new boundis in expectation
only!

3

Algorithm: z

A
dv

er
sa

ry
/In

pu
t: 

u

Player will always buy early 

Good for Adv:
Comp. ratio is
(z+1) / u

Comp. ratio is (z+1) / 1

Good for Algo
Comp. ratio is
u / u

Uninteresting for Adv:

1

0 1

Figure1: Choosingmorethantwo values

Maybeonecando evenbetterby allowing the algorithmto choosemorethantwo values...Maybe
even infinitelymany values?!?Thescenariois in Figure1.

Then,theexpectedcompetitive ratio is

E[c] =
1

2
+

∫

1

0

∫ u

0

z + 1

u
dzdu = . . . = 1.75.

Wasthatavalid argument?Why yes,why no?

We assumedthat theadversarychoosesu with uniform distribution. This is not OK. In this specific
example,anadversarycancausemuchmoreharmby choosingvaluescloseto 1. In addition,it was
notcorrectto sumuptheratiosof thecosts,insteadweshouldcomputetheratioof theexpectedcosts.

Instead,weshouldrathersolve

E[c] =

∫

1

0

∫ u
0 (z + 1)p(z)d(u)dzdu +

∫

1

0

∫

1

u up(z)d(u)dzdu
∫

1

0

∫

1

0 up(z)d(u)dzdu
,

wherep(z) is theprobabilitydistribution of thealgorithm,andd(u) is theprobabilitydistribution of
the adversary, with

∫

p(z) =
∫

d(u) = 1. The adversarychoosesits distribution d(u) such thatit
maximizesthe expectedcompetitive ratio E[c], andthe algorithmchoosesits distribution p(z) such

4



thatit minimizesE[c].

This is a very hardtask.However, we cantackleit by makingtheproblemindependentof theadver-
sarialdistribution. How doesthiswork?!?

The ideais asfollows: if theadversarychoosesa valueu with u ≤ 1 thenit occursanoptimalcost
costopt(u) = u. If we want our algorithmto be strictly c-competitive, all we have to do is to incur
a cost lessthanc · u whenbeingoffered input u, for all u. In otherwords,we have to choose the
algorithm’sprobabilityfunctionp(z) such thatcostA(u) ≤ c · u.

Recallthatthealgorithm’scostis

costz(u) =

{

u if u ≤ z
z + 1 if u > z

(1)

Again, it seemsnaturalto restrict the algorithmto valuesbetween0 and1. Also the adversarycan
restrictitself to valuesbetween0 and1, because,if a valuehigherthan1 is presented,theadversary
andthealgorithminfer exactly thesamecostasif thevalue1 waspresented.Therefore,

∫ u

0

(z + 1)p(z)dz +
∫

1

u
u · p(z)dz ≤ c · u, with

∫

1

0

p(z)dz = 1.

Having ahunchthatthebestprobabilityfunctionwill probablybe anequality, we immediatelytry

∫ u

0

(z + 1)p(z)dz + u
∫

1

u
p(z)dz = c · u, with

∫

1

0

p(z)dz = 1.

Wefirst differentiatewith respectto u, getting

(u + 1)p(u) +
∫

1

u
p(z)dz + u · (−p(u)) = p(u) +

∫

1

u
p(z)dz = c.

Weagaindifferentiatewith respectto u, andget

δp(u)

δu
− p(u) = 0 ⇔

δp(u)

δu
= p(u).

That’soneof thefew differentialequationseverybodyknows:

p(u) = α · eu.

In orderto revealα weuse
∫

1

0 p(z)dz = 1:

1 =
∫

1

0

αezdz = α(e1 − e0) ⇒ α =
1

e − 1
.

In otherwords,p(u) = eu

e−1
. Weinsertp(u) into thefirst differentiation:

c = p(u) +
∫

1

u
p(z)dz =

eu

e − 1
+

e1 − eu

e − 1
=

e

e − 1
.

Notethatalsofor inputsu > 1 theinequalitycostA(u) ≤ c · costopt(u) = c · 1 holds.

Theorem5.4 In otherwords,with p(z) = ez

e−1
wehaveanalgorithmthat is e

e−1
-competitivein expec-

tation.

5

Remark:

• Thebig questionremains:Canwegetany better?!?

5.3 Lower Bounds

Time to think aboutlower bounds.Lower boundsfor randomizedalgorithmsoftenusetheVon Neu-
mann/ YaoPrinciple,whichwestateandusewithoutproof:

Theorem5.5(Von Neumann/ YaoPrinciple) Choosea distribution over probleminstances(for
ski rental,e.g. d(u)). If for this distribution all deterministicalgorithmscostat leastc, thenc is a
lowerboundfor thebestpossiblerandomizedalgorithm.

For ski rentalwe arein the lucky situationthatwe caneasilyparameterizeall possibledeterministic
algorithmsby z ≥ 0. Now wehave to chooseadistributionof inputs,with d(u) ≥ 0 and

∫

d(u) = 1.
For example,d(u) = 1/2 for 0 ≤ u ≤ 1 andd(“∞”) = 1/2.
Examplealgorithms:

• z = 0 (immediatebuy): incursa constantcost1 for all possibleinput distributions: Therefore
costz=0(d(u)) = 1.

• z = 1 (worst-casedeterministicalgorithm):incursthesamecostastheoptimaloffline algorithm
for smallu but cost2 for u = ∞ whichhappenswith probability1/2; whensummingupwesee
thatcostz=1(d(u)) = 5/4.

More formally, thecostof theoptimaloffline algorithmis

costopt(d(u)) =
1

2

∫

1

0

udu +
1

2
· 1 =

3

4
.

For generalz ≤ 1 thecostof thealgorithmis

costz =
1

2

(
∫ z

0

udu +
∫

1

z
(z + 1)du

)

+
1

2
(z + 1)

=
1

2

(

z2

2
+ (z + 1)(1 − z) + (z + 1)

)

= 1 +
z

2
−

z2

4
≥ 1.

For generalz > 1 thecostof thealgorithmis

costz =
1

2

∫

1

0

udu +
1

2
(z + 1) =

1

4
+

z + 1

2
> 5/4.

Usingcostopt(d(u)) = 3/4 weconcludethatthecompetitive ratio c is at least4/3 = 1.33.

Remarks:

• Notethatfor distributiond(u) indeedz = 0 is thebestalgorithm.

• Thelowerboundof 1.33 andtheupperboundof 1.58 donotmatch.

6



• As arguedabove, theimmediatebuyalgorithmis worstwith very smallu. In orderto makeour
lower boundstrongerit could thereforebe beneficialto tunethe input distribution such thatit
containsmoresmallu values.

• Guessingthe right input distribution is indeedhard. However, similarly to theupperbound,it
canbe derived usingdifferentialequations.The worst input distribution is d(u) = 1/eu, for
0 < u < 1, andd(“∞”) = 1/e.

• Next, let us study someonline problemsin the Internet(“Web”) context. We will discover
surprisingconnectionsto ski rental.

5.4 The TCP AcknowledgementProblem

TPCis a layer4 networkingprotocolof theInternet.It features,amongotherthings:

• An error handlingmechanismwhich tacklestransmissionerrorsand disorderingof packets,
usingsequencenumbersandacknowlegdements.

• A “friendly” exponentialslow startmechanismsuch thatnew connectionsdo not overloadthe
network.

• Flow Control:A slidingwindow sender/receiverbuffer thatsimplifieshandlingandpreventsthe
receiverbuffer from overload.

• CongestionControl: A backoff mechanismthatshouldpreventnetwork overloading.

In this first part we study the TCP AcknowledgementProblem. We studya single sender/receiver
pair, wherethe sendersendspacketsandthe receiver acknowledgesthem(without sendingpackets
itself). ThereareseveralTCPimplementationsavailable,with variousacknowledgement-procedures.
In order to save resources,no implementationsendsacknowledgementsright away.1 Insteadthese
implementationssendcumulative acknowledgements(“I received all packetsup to packet x”). This
mechanismis thesubjectof this subsection.

At thereceiverside,thesituationlookslike in Figure2.

Definition 5.6(TCP AcknowledgementProblem) Thereceiver’s goal is a schemewhich minimizes
thenumberof acknowledgementsplus thesumof thelatenciesfor each packet,where thelatencyof a
packet is thetimedifferencefromarrival to acknowledgement.More formally, wehave

• n packetarrivals, at times:a1, a2, . . . ,an

• k acknowledgements,at times:t1, t2, . . . , tk

• Andwewantto minimize:

min k +
n

∑

i=1

latency(i), with latency(i) = tj − ai, where j such that tj−1 < ai ≤ tj.

1Oneversionof Solaris,for example,alwayswaits50msbeforeacknowledgingin orderto supportmultiple acknowl-
edgementsin a singlemessage.In oneversionof BSD, TCP-Ack hasa 200msheartbeat,andacknowledgesall packets
receivedsofar.

7

Received packets

time

Packs
Acks

Figure2: TCPACK problem

Remarks:

• Notethatin Figure2 thetotal latency is exactly theareabetweenthetwo curves.

• Clearly, we arecomparingappleswith orangeswhencomparingthe numberof acknowledge-
mentswith thesumof latencies.However, whenscalingthetimeaccordingly, thisshouldnotbe
abig problem.

• Thereare quite a few technicalexceptions. In many implementations,signalingpackets are
usually acknowledgedfaster(e.g. SYN, FIN); also TCP standardwantsimplementationsto
acknowledgepacketswithin 500ms.Sincethereceiver is usuallyalsosender, it mightalsodelay
its own sendingpackets.

• In ourstudieswedonot learnthefuturefrom thepast.A machinelearningapproachcouldgive
a totally differentperspective.

Algorithm 5.7(z = 1 Algorithm) Thez = 1 algorithmis sketchedin Figure 3. Whenever a rec-
tanglewith area z = 1 doesfit betweenthe two curves,the receiversendsan acknowledgement,
acknowledgingall previouspackets.

Lemma 5.8 TheoptimalalgorithmsendsanACK betweenanypair of consecutiveACKsbyalgorithm
with z = 1.

Proof. For thesake of contradiction,assumethat,amongall algorithmswho achieve theminimum
possiblecost,thereis no algorithmwhich sendsanACK betweentwo ACKs of thez = 1 algorithm.
We proposeto sendanadditionalACK at thebeginning(left side)of eachz = 1 rectangle.Sincethis
ACK saveslatency 1, it compensatesthecostof theextra ACK. Thatis, thereis anoptimalalgorithm
whochoosesthisextraACK. ⊓⊓

Theorem5.9 Thez = 1 algorithmis 2-competitive

8



Received packets

time

Packs

z = 1

z = 1

z 
=

 1

Alg

Figure3: Thez = 1 algorithm

Proof. Wehave costopt = kopt + latencyopt andcostz=1 = kz=1 + latencyz=1.
Sincethe optimal algorithm sendsat leastone ACK betweenany two consecutive ACKs of Az=1

(previousLemma),weknow kz=1 ≤ kopt.

Received packets

time

Packs

opt

z = 1

Figure4: Az=1 vs. theoptimalalgorithm

Also, by definition(seeFigure4),

latencyz=1 = latencyopt + latency(z = 1 withoutopt) − latency(opt without z = 1)

≤ latencyopt + latency(z = 1 withoutopt).

Using latency(z = 1 withoutopt) < kopt · 1 (if any of theserectangleswereof size1 or larger, Az=1

wouldhaveACKedearlier)weget:

9

costz=1 = kz=1 + latencyz=1

≤ kopt + latencyopt + latency(z = 1 withoutopt)

< kopt + latencyopt + kopt · 1

= 2 · kopt + latencyopt ≤ 2 · costopt

⊓⊓

Remarks:

• It’s no coincidencethatwe calledthealgorithmz = 1. Similarly to ski rental,it is possibleto
chooseany z. In fact, if you really think aboutit, theTCPACK problemis in factvery much
likeski rental! Indeed,if youwait for a rectangleof sizez with probabilityp(z) = ez

e−1
, youend

upwith a randomizedTCPACK solutionwhich is e
e−1

competitive in expectation.

• Many otherproblemsarealsojust like ski rental! That’s why we studiedit in the first place.
E.g. theHalbtax-Problem(originally known astheBahncardproblem).Buying a Halbtax-Card
which reduceseachtrip by β is e

e−1+β
competitive.

5.5 The TCP CongestionControl Problem

As a next examplewe study the sendersideof TCP. We ask: How many segments(or packets,or
bytes)persecondcana senderinject into thenetwork without overloadingit? Theproblemis thata
senderdoesnot know thecurrentbandwidthbetweenitself andthereceiver. And, moreimportantly,
thisbandwidthmight changeover time withotherconnectionsstartingup,or closingdown.

Here’sourmodel:

• Wedivide thetime into periods(or slots).

• In eachperiodt thereis an unknown thresholdut, whereut is the numberof packets(or seg-
ments,or bytes)that could successfullybe transmittedfrom senderto receiver, without over-
loadingthenetwork.

• In periodt, thesenderchoosesto transmitxt packets.

• If xt ≤ ut wearefine. However, sendingat tooconservativeor smallratesxt ≪ ut is awasteof
theavailablebandwidth.Onepossiblewayto capturethisaspectwouldbeto useanopportunity
costfunctionof theform costt = ut − xt.

• If xt > ut, we arenot fine. We areoverloadingthe channel. Thereareseveral costmodels
possible. In a severecostmodel,nothinggetstransmitted(costt = ut), in a lessseverecost
model,somefractionof thepacketsmightgetdropped(e.g.costt = α(xt − ut)).

10



5.6 The Static Model

We start out with the simplestpossiblemodel, wherethe bandwidthis constantover time, that is,
ut = u. Theproblemis thento find thecorrectbandwidthu (with somethinglikebinarysearch);once
thesenderfoundthecorrectbandwidth,therewill benomorecost.Weassumefirst thatu is aninteger,
andthat1 ≤ u ≤ n, thatis, thereis anupperboundn for thebandwidth.

Possiblealgorithms:

• Plainold binarysearchneedslog n searchsteps.For aworst-casechoiceof u thealgorithmwill
often inject too many packets,and(in a severecostmodel)have costu = Θ(n) in moststeps,
thusthetotal costis Θ(n log n).

• A standardTCP congestioncontrol mechanismis usually following the AIMD (Additive In-
creaseMultiplicative Decrease)paradigm:OnceTCP sendssomany packetsthat thenetwork
becomesoverloaded,routerswill start droppingpackets. The sendercan witnessthis (with
missingACKs), andconsequentlydecreasesits transmissionrate(for examplein a multiplica-
tive way, e.g.,by a factor2). Thenthesenderstartsincreasingits transmissionrateagain, but
slowly, to approachthe“right” bandwidthagain (for exampleby 1, in anadditive way). In our
model,if therealbandwidthis u = n − 1, suchanalgorithmwill clearlybevery muchoff the
right bandwidthu mostof the time. Sinceapproachingu takesΘ(n) steps,andin the severe
costmodelmoststepscostu − xt = Θ(n), thecostof theAIMD algorithmis Θ(n2).

• Theobviousquestion:Canwedobetter?!?

Algorithm 5.10(Shrink) Thealgorithm operateson a pinning interval [i, j], originally [i, j] =
[1, n]. Thealgorithmhastwophases:

• Phase1: Find theright power-of-two-upperbound,that is, find j such that 2k < j ≤ 2k+1

by testing2k + 1. If 2k + 1 ≤ u gotophase2, elseset[i, j] = [1, 2k] andstayin phase1.

• Phase2: Wearegiven[i, j] with 2t−1 + 1 ≤ i < j ≤ 2t. Nowwetest

i + max

(

1,
2t

22m+1

)

with m beingthelargestinteger such that j − i < 2t

22m . Thenadapt[i, j] accordingly.

Remarks:

• It canbeshown thatthecostof theShrinkalgorithmis O(n log log n).

• For largen, it is remarkablethatthevastmajorityof increasestepsareincrementsby just1. And
almostall decreasestepsaresubstantial.In otherwords,thealgorithmis anAIMD algorithm.

• If n is not known, we canfind an upperboundof u quickly by a repeatedsquaringtechnique
first, thatis, test2, then22 = 4, then42 = 16, then162 = 256, . . .. It canbeshown thatthetotal
costis O(u log log u).

11

• Thereis a lower boundof O(u log log u/ log log log u). HencetheShrinkalgorithmis asymp-
totically almostoptimal.

• However, this wasonly an warm-upexample. What we are really interestedin aredynamic
models.

5.7 The Dynamic Model

In this section,thethresholdmayvary from stepto step,i.e., theadversarychoosesa sequence{ut}.
Thereby, theadversaryknows thealgorithm’s sequence{xt} of probes/testsin advance.Clearly, we
areagain in therealmof onlinealgorithmsandcompetitiveanalysis.

WehavepostulatedthatcostAlg(I) ≤ c · costopt(I). Observethatanoptimalofflinealgorithmknowing
theinput (asin ski rentalor TCPACK) canalwaysplay xt = ut, which impliesthatcostopt = 0. No
onlinealgorithmcanbecompetitive!

For this reasonit seemsmore fruitful to look at gain (or profit) rather than cost. We updateour
definitionfrom ski rentalasfollows:

Definition 5.11(CompetitiveAnalysis) An online algorithmA is strictly c-competitiveif for all
finite input sequencesI

costA(I) ≤ c · costopt(I), or

c · gainA(I) ≥ gainopt(I).

Remark:

• Notethatin bothcasesc ≥ 1. Thecloserc is to 1, thebetteris analgorithm.

For aseverecostmodel,anaturaldefinitionof gain couldlook asfollows:

gainxt
(ut) =

{

xt if xt ≤ ut

0 if xt > ut

However, notethatour adversaryis too strongbecause(knowing thealgorithm)it canalwayspresent
anut < xt (or, if xt = 0, any ut). The total gain of thealgorithm(givenas

∑

t gainAlg(t)) is 0. We
thereforeneedto furtherrestrictthepowerof theadversary. Severalrestrictionsseemto bereasonable
andinteresting:

• Bandwidthin afixedinterval: ut ∈ [a, b]

• Multiplicatively (or additively) changingbandwidth:ut/µ ≤ ut+1 ≤ µ · ut (or ut − α ≤ ut+1 ≤
ut + α)

• Changeswith bursts

In thefollowing, thethreerestrictionswill bestudiedin turn.

12



5.8 Bandwidth in a Fixed Inter val

We startout by letting theadversarychooseut ∈ [a, b]. Thealgorithmis awareof theupperboundb
andthe lower bounda. We first restrictourselvesto deterministicalgorithms. In this case,notethe
following:

• If thedeterministicalgorithmplaysxt > a in roundt, thentheadversaryplaysut = a.

• Thereforethealgorithmmustplayxt = a in eachroundin orderto haveat leastgain = a.

• Theadversaryknows this,andwill thereforeplayut = b

• Therefore,gainAlg = a, gainopt = b, competitive ratio c = b/a.

As usually, we askwhetherrandomizationmight help! Let’s try theski rentaltrick immediately! In
particular, for all possibleinputsu ∈ [a, b] wewant thesamecompetitive ratio:

c · gainAlg(u) = gainopt(u) = u.

¿Fromthedeterministiccaseweknow thatit mightmakesenseto treatthecasex = a individually. (If
we do not, thentheprobability to choosex = a will be infinitesimallysmall,andtheadversaryonly
needsto presentu = a + ǫ all thetime,andouralgorithmis in troublesinceit nevermakesany gain.)

Algorithm 5.12 We choosex = a with probabilitypa, andanyvaluein x ∈ (a, b] with probability
densityfunctionp(x), with pa +

∫ b
a p(x)dx = 1.

Theorem5.13 There is an algorithmthat is c-competitive, with c = 1 + ln b
a
, “ ln” beingthenatural

logarithm.

Proof. Settingup theski rentaltrick, wehave

c ·
(

pa · a +
∫ u

a
p(x) · xdx

)

= u.

Thenwedifferentiatewith respectto u, andget,

δ

δu
= c · p(u) · u = 1 ⇒ p(u) =

1

cu
.

Weplug thisbackinto thedifferentialequation,andget

c ·
(

pa · a +
∫ u

a

x

cx
dx

)

= cpaa + (u − a) = u ⇒ a(cpa − 1) = 0 ⇒ pa = 1/c.

To figureout c, weusethatall probabilitiesmustsumup to 1:

1 = pa +
∫ b

a
p(x)dx =

1

c
+

1

c

∫ b

a

1

x
dx ⇒ 1 + ln b − ln a = c.

⊓⊓

Whataboutthelowerbound?WeusetheVonNeumann/ YaoPrinciple:

13

Theorem5.14 Thereis norandomizedalgorithmwhich is betterthanc-competitive, with c = 1+ln b
a
.

Proof. Let a little fairy tell ustheright inputdistribution: Wechooseb with probabilitypb = a/b, and
selectu ∈ [a, b) with probabilitydensityp(u) = a/u2. Theinput is OK because

pb +
∫ b

a

a

u2
du =

a

b
+ a

∫ b

a

1

u2
du =

a

b
+ a

(

−1

b
−

−1

a

)

= 1.

Thegainof theoptimalalgorithmon this input is:

gainopt = b · pb +
∫ b

a
u · p(u)du = b

a

b
+

∫ b

a
u ·

a

u2
du = a + a

∫ b

a

1

u
du = a(1 + ln(b/a)).

Thegainof adeterministicalgorithmchoosingx on this input is:

gainx = x · pb +
∫ b

x
x · p(u)du = x

a

b
+ ax

∫ b

x

1

u2
du = ax(

1

b
+ (

−1

b
−

−1

x
)) = a.

Hence,
gainopt

gainx

=
a(1 + ln(b/a))

a
= 1 + ln(b/a).

⊓⊓

Remarks:

• Great,upperandlowerboundaretight!

• Didn’t weaskfor u, x beingintegers?In thiscase,c = 1 + Hb −Ha, whereHn is theharmonic
numbern definedasHn =

∑n
i=1 1/i ≈ ln n.

• Now let’s turn to themorerealisticcaseswherethebandwidthsmoothlychangesover time,and
doesnot jumpupanddown likecrazy.

5.9 Multiplicati vely ChangingBandwidth

Now theadversarymustchooseut such thatut/µ ≤ ut+1 ≤ µ · ut. Thealgorithmknows themaximal
possiblechangefactorµ perperiod.Weassumethatthealgorithmalsoknows theinitial thresholdu1.
Think of µ asbeingavaluesuch thatthebandwidthchangesa few percentsonly perperiod.

If the adversarykeepsraisingu asfastaspossible(ut+1 = µ · ut for several rounds),thenit seems
reasonablethatthealgorithmdoesthesame.In particular, if thealgorithmchoosesxt+1 = (1 − ǫ)µxt

then

lim
t→∞

ut

xt

=
µt

(1 − ǫ)t · µt
= ∞.

Therefore,if therewasa successfultransmissionin period t, thealgorithmchoosesxt+1 = µxt. On
theotherhand,if xt wasnot successful,xt+1 = λxt. We will setλ = 1/µ3. The ideais thatat least
everyotherroundis successful.

Lemma 5.15 Aftera non-successfulroundthere is alwaysa successfulround.

14



Proof. Sinceweknow u1, thealgorithmcanchoosex1 = u1, andhave asuccess.Our invariantis that
every non-successfulroundis followedby a successfulround.Assume,for thesake of contradiction,
thatroundt + 1 is thefirst non-successfulroundwhich follows aftera non-successfulroundt, which
(by inductionhypothesis)followsasuccessfulroundt− 1 (notethatxt−1 ≤ ut−1). Sinceut ≥ ut−1/µ
for all t we have ut+1 ≥ ut−1/µ

2. On the otherhand,we have xt+1 = λxt = λµxt−1 = xt−1/µ
2.

Therefore,
xt+1 = xt−1/µ

2 ≤ ut−1/µ
2 ≤ ut+1,

henceround t + 1 is a success.We have acontradiction,which proves that therecanbe only one
non-successfulroundin a row. ⊓⊓

Lemma 5.16 A successfulroundis µ4-competitive.

Proof.

• If asuccessfulroundt + 1 followsasuccessfulroundt, roundt + 1 is at leastascompetitiveas
roundt sincethealgorithmsetxt+1 = µxt.

• If a successfulroundt + 1 follows a non-successfulroundt (ut < xt), then,sincext+1 = λxt

andut+1 ≤ µut wehave

xt+1 = λxt > λut ≥ λut+1/µ = ut+1/µ
4.

⊓⊓

Theorem5.17 Thealgorithmis (µ4 + µ)-competitive.

Proof. In anon-successful(“f ail”) roundt, it holdsthatut < µxt−1, becausext−1 ≤ ut−1 (cf. Lemma
5.15),xt = µxt−1 andut < µxt−1. Thus

gainopt(succ) + gainopt(fail)

gainAlg(succ)
<

µ4 · gainAlg(succ) + µ · gainAlg(succ)

gainAlg(succ)
= µ4 + µ.

⊓⊓

While this algorithmis goodfor smallµ, thecompetitive ratio grows quickly for largerµ. In the
following, we show that an algorithmwhich increasesthe bandwidthby a factorµ after successful
roundsandhalvestherateafternon-successfulroundsis 4µ-competitive.

Theorem5.18 Thisnew algorithmis 4µ-competitive.

Proof. First, we show by inductionthat in eachsuccessfulor good roundt, ut ≤ 2µxt. For t = 1,
u1 = x1 andtheclaim holds. For the inductionstep,considertheroundt − 1 beforethegoodround
t. Therearetwo possibilities:eitherroundt − 1 wasnon-successfulor bad (xt−1 > ut−1), or good
(xt−1 ≤ ut−1). If roundt − 1 wasbad,we havext = xt−1/2 andut ≤ ut−1µ < xt−1µ = 2µxt, hence
ut/xt < 2µ, andtheclaim holds. If on theotherhandroundt − 1 wasgood,thealgorithmincreases
the bandwidthat leastasmuchasthe adversary. Togetherwith the inductionhypothesis,the claim
followsalsoin this case.

15

Having studiedthe gain in goodrounds,we now considerbadrounds. We show that in the bad
roundsfollowing a goodroundt, theadversarymayincreaseits gain at mostby 2µxt. Solet t bethe
goodroundprecedinga sequenceof badrounds,t.e.,xt ≤ ut, xt+1 > ut+1, xt+2 > ut+2, etc. We
know thatxt+1 = µxt, so—becauseit is a badround—ut+1 mustbe lessthanµxt. Further, we have
xt+2 = xt+1/2 = µxt/2 andhenceut+2 < µxt/2, xt+3 = µxt/4 andhenceut+3 < µxt/8, etc. By a
geometricseriesargument,thegainof theadversaryin thebadroundsis upperboundedby 2µxt.

Therefore,

ρ =
gainopt(succ) + gainopt(fail)

gainAlg(succ)

<
2µ · gainAlg(succ) + 2µ · gainAlg(succ)

gainAlg(succ)

< 4µ.

⊓⊓

5.10 Changeswith Bursts

In theprevioussection,weassumedthatthebandwidthchangesby atmostagivenconstantpercentage
µ over time. However, onecanimaginethat in the real Internettheremay be quiet timeswherethe
congestionlevel hardly changes,andtimeswheretherearevery abruptor bursty changes.In main
objectiveof this sectionis to present—withoutany analyses—anadversarymodelwhich incorporates
sucha notionof bursts.Our modelis basedon conceptsof networkcalculus, a tool which is typically
usedto studyqueuingsystemsfrom aworst-caseperspective.

TheburstyadversaryADVnc hastwo parameters:A rateµ ≥ 1 andmaximumburst factorB ≥ 1.
In every round,theavailablebandwidthut mayvary accordingto theseparametersin a multiplicative
manner. Moreprecisely, ADVnc mayselectthenew bandwidthut+1 from theinterval

ADVnc : ut+1 ∈ [
ut

βtµ
, ut · βt · µ],

that is, theavailablebandwidthmaychangeby a factorof at mostβtµ. Thereby, βt is theburst factor
at timet. Thisburstfactoris explainednext.

On average,theavailablebandwidthcanchangeby a factorµ per round. However, theremaybe
timesof only small changes,but thenthe bandwidthmight changeby factorslarger thanµ in later
rounds. This is modeledwith the burst factorβt, which is definedasfollows. At the beginning,βt

equalsB, i.e., β1 = B. For t > 1, theburst factorβt is computeddependingon βt−1 andtheactual
bandwidthchangect−1 thathashappenedin roundt − 1. Moreprecisely,

βt = min{B, βt−1

µ

ct−1

}

wherect := ut+1

ut

if ut+1 > ut and ut

ut+1
otherwise.This meansthatif theavailablebandwidthchanged

by a factorlessthanµ in roundt, i.e., ct < µ, theburst factorincreasedby a factor µ
ct

, andhencethe
bandwidthcanchangemorein thenext round,andviceversaif ct > µ.

Therefore,theadversaryis allowed to save adversarialpower for forthcomingrounds.However,
thisamortizationis limited asβt canneverbecomelargerthanB for all roundst. Also notethatβt ≥ 1
alwaysholds,becausect ≤ µβt by thedefinitionof ADVnc.

16



Figure5: Visualizationof ADVnc for thecase∀t : ut+1 ≥ ut. Thebandwidthmayincreasemultiplicatively in
every round,but it mustneverexceedtheconstraintsfrom previousrounds(dashedlines).

Figure5 visualizesADVnc for thecase∀t : ut+1 ≥ ut, i.e., for increasingbandwidthonly: The
bandwidthmay rise by a factor of µB in every round, unlessit conflicts with a constraintfrom a
previousround,i.e.,∀t : ut ≤ mini∈{1,...,t−1}{ut · B · µt−i}.

In orderto analyzesuchbursty adversaries,similar techniquesasthosepresentedin Section5.9
canbeapplied;wedonotperformthesecomputationshere.

17


