Byzantine Agreement Using Authentication

```
If I am P and own input is 1
value := 1
broadcast "P has 1"
else
value := 0

In each round r ∈ 1...f+1:

If value = 0 and accepted r messages "P has 1" in total including a message from P itself
value := 1
broadcast "P has 1" plus the r accepted messages that caused the local value to be set to 1

After f+1 rounds:

In total r+1 authenticated
"P has 1" messages

Decide value
```

Distributed Systems - Roger Wattenhofer - 6/132

Randomized Algorithm

```
x := \text{own input}; r = 0
Broadcast proposal(x, r)

In each round r = 1, 2, ...:

Wait for n-f proposals

If at least n-2f proposals have some value y

x := y; decide on y
else if at least n-4f proposals have some value y

x := y;
else

choose x randomly with P[x=0] = P[x=1] = \frac{1}{2}
Broadcast proposal(x, r)

If decided on a value \Rightarrow stop
```