
HS 2009 Prof. Dr. Roger Wattenhofer, Thomas Locher, Remo Meier, Benjamin Sigg

Distributed Systems

Solution 4

Assigned: November 27, 2009
Discussion: December 4, 2009

1 Multi-Paxos

It is often necessary to have a sequence of decisions rather than a single decision. One solution
would be to run (standard) Paxos multiple times. This solution, however, is not very efficient.

Multi-Paxos is a version of Paxos that requires less rounds to make a sequence of decision.
The first time Multi-Paxos runs, it behaves exactly like Paxos. But in every subsequent call
it runs an optimized algorithm, using fewer rounds than Paxos.

Multi-Paxos does not alter or introduce new messages, it only removes unnecessary mes-
sages from Paxos.

a) How does a subsequent call of Multi-Paxos work? To answer this question have a look
at slide 7/35, remove any unnecessary line of the pseudo-code.
Hint: What is not known in the start phase, but in any subsequent phase?

b) Assuming there are no failures at all: What is the minimum number of acceptors that
a proposer needs to contact? And which acceptors would the proposer contact? Of
course, all servers should have about the same amount of work.
Warning: all proposers contacting the same acceptor would work, but the workload would not

be distributed evenly.

c) How could Multi-Paxos protect itself agains Byzantine failures happening in a subse-
quent call?
Hint: Byzantine Multi-Paxos requires exactly one round more than Multi-Paxos.

Solution

a) First we assume that the same proposer is used to build a sequence of decisions. If a
proposer successfully brings a majority of acceptors to accept its decision, then these
acceptors must have the same xlast, nlast and nmax (otherwise they would not acknowl-
edge the choice). In the subsequent call the proposer can use this fact and send the
proposal message directly, and just ignore the prepare message. The proposer has to
reuse its last request number.

1



What happens if there is another proposer? The other proposer must use another
request number. If the second proposer sends prepare messages, then the new messages
just override the values used by the first proposer. The first proposer will not receive
enough acknowledgments when sending propose to decide. But that is no problem,
as the proposer may just try again (with a new sequence number and new prepare

messsage). In the worst case the protocol never ends, but that is highly unlikely.

b) Normally (Multi-)Paxos contacts a majority of nodes. This means that if two proposers
run concurrently, then there is at least one acceptor which is contacted by both pro-
posers. This (or these) shared acceptor ensures that one of the proposers cannot collect
enough acknowledgments to make a decision.

One advantage of choosing a majority set is, that it is not important how it is chosen.
The intersection of two majority sets always contains an acceptor.

But if there are no failures at all, we could allow a proposer to choose a smaller set of
acceptors. The only thing we have to ensure is, that if two proposers run in parallel,
the intersection of their sets contains at least one acceptor. We can do this using sets
of size O(

√
n). See figure 1 to see how the sets could be chosen.

If there are not enough acceptors to build a triangle like in figure 1 we just do not fill
up the last row. The last proposers then chooses some acceptors from the second last
row.

c) The easiest solution is: all acceptors compare their propose message by broadcasting
them. If a majority has the same propose message, then the protocol will work, other-
wise there must be Byzantine servers around. In such a case Paxos could just restart
and try again.

a0

a1 a2

a3 a4 a5

a6 a7 a8 a9

an−5 an−4 an−3 an−2 an−1 an

p2 →

p4 →

Figure 1: How proposers p have to choose sets of acceptors a such that the intersection of
two sets always contains at least one acceptor. Proposer p2 contacts acceptors in the red area
(a1, a2, ...an−4) while proposer p4 contacts acceptors in the blue area (a6, a7, ..., an−2). The
acceptor a7 is contacted by both proposers. Either a7 accepts the proposal of p2 or of p4, but
it is not possible for a7 to accept both proposals.

2



2 PBFT

See slide 7/58 ff.

a) Why is there a prepare phase? Can you given an example where the algorithm would
fail without the prepare phase?

Let us assume there are exactly n = kf +1 servers, with k ≥ 3 and f the number of faulty
servers.

b) How many (pre-)prepare messages must a server receive until it is prepared (and
sends the commit message)?

c) Using your result from from b), prove that if a correct backup server prepared for
message m, then no other correct backup server is prepared for another message m′

(unless, due of very bad luck, the hash of both messages are equal).

Currently each backup server broadcasts its prepare and commit messages. From b) you
know that backup servers do not require n messages in order to decide about their next step.
As a result some messages are not needed at all.

d) Modify the prepare and commit phase so that as few messages as possible are sent. If
the primary is correct, then your protocol should ensure that all correct backup servers
commit.

e) Prove: if the primary is correct, then your modified protocol from d) works and all
correct processes commit.

f) (Optional, open question) For your protocol from d): Assume the primary is Byzantine.
The primary tries to remain primary, e.g. he must ensure that at least one correct
process commits, otherwise the client notices that something is wrong. How many wrong
messages can the faulty primary send before too many server notice his behavior? What
kind of damage can he inflict? Assume a worst case scenario for the Byzantine primary.

Solution

a) The pre-prepare and prepare phases of the algorithm guarantee that correct backup
servers agree on a total order for the requests within a view.

With other words, the prepare phase synchronizes the servers such that all commit the
requests in the same order.

An example without prepare phase

Remember our model, we can have message re-ordering and message delay.

1 The primary sends a request, which is received by all backup servers. Each backup
server broadcasts a commit message. Unfortunately all commit messages, except
2f +1 heading for server x, are delayed. While server x commits, the other servers
do nothing.

3



2 The primary sends another request, which is received by all backup servers. Each
backup server broadcasts the next commit message. This time the messages are
not delayed, and all servers commit.

3 The delayed commit messages from the first request arrive. All servers, with the
exception of server x, commit the first request.

So different servers commit the requests in different orders, you can easily imagine some
requests leading to inconsistency in the system...

How would the prepare phase help against such a problem? In order for a backup server
to commit it has to receive 2f + 1 commit messages. If some messages are delayed the
2f +1 servers remain in the commit phase. If they would now receive the next prepare
messages, they would notice the problem and not (yet) send the next prepare message.

Questions and answers

Why can’t we use the view-number, time-stamp or sequence-number to achieve the same
effect?

• The view-number only changes if the primary changes, this might not happen
often.

• The time-stamp carries no information whether there was any message before (ex-
ample: you may know your train arrived at 9:14 at the station, but this information
doesn’t tell you whether another train arrived at 9:13)

• The sequence number could be altered by any Byzantine server.

b) A backup server must receive enough messages to build a quorum. In this case a quorum
is a set of size s with s > n/2 + f/2.

c) Proof by contradiction: Assume backup server a is prepared for m, backup server b
is prepared for m′. Both must have received quorum-many (pre-)prepare messages.
This means, at least one correct server sent two different messages, but a correct server
would never do such a thing.

d) Any correct backup server must receive s (= size of a quorum) (pre-)prepare and s
commit messages in order to commit. To achieve this goal, every correct server must
deliver s messages to the other correct servers. Because a correct server does not know
which servers are faulty, it has to send slightly more than s messages. Every server has
to send s + f (pre-)prepare and s + f commit messages. The i’th server sends its
messages to the servers {i + 1, i + 2, ..., i + 1 + s + f} (modulo n).

e) If the primary is correct:

• All n−f correct backup servers receive pre-prepare and send s+f many prepare

messages.

• All n − f correct backup servers receive at least s many prepare messages and
send s + f many commit messages.

• All n − f correct backup servers receive at least s many commit messages and
commit.

4



f) The exact answer depends on your protocol from d), but in general the Byzantine
primary can do almost no damage.

Forge messages

If the primary sends out only one forged message to a correct server, then the correct
server distributes the forged message to s many other correct servers. All of them notice
something is wrong, and issue a view change request. Because s servers are enough to
elect a new primary, the Byzantine primary must not send even one forged message.

Omit messages

The Byzantine primary sends the pre-prepare messages only to the first s correct
servers. These s servers send prepare messages, but can only get s + c0 (with c as
small constant) correct servers into the prepare-state. These prepared s + c0 servers
then trigger only s + c1 correct servers to commit.

If the primary always sends its pre-prepare message to the same s servers, then always
the same servers commit. The other servers become useless and their data gets more
and more out-dated.

5


