TinyOS Lab Exercise

Introduction to TinyOS 2

Eldgendssische Technische Hochschule Zdrich

Swiss Federal Institute of Technolagy Zurich Ad Hoc and Sensor Networks — Philipp Sommer 1



TinyOS Lab Exercise in Ad Hoc and Sensor Networks

e Sensor network programming in a nutshell
— Read ‘Getting started with TinyOS’ (at home)
— Solve two Lab-style exercises on real hardware
— Teams of two to three students are ideal

— One lab working place is available in ETL F29
— Reservation system on the course website




Wireless Sensor Nodes

e Shockfish TinyNode
— Slow CPU
— 8 MHz Texas Instruments MSP430 microcontroller

— Little memory
— 10 KByte RAM, 48 KByte ROM, 512 KByte external flash

— Short-range radio
— 868 MHz Xemics XE1205 ultra-low power wireless transceiver

— Light sensor, temperature and humidity sensors

Extension Board TinyNode 584




Exercise 1

e Exchange of a sensor data
— Two sensor nodes are used for this task

— One node periodically samples its light sensor and broadcasts the sensor
reading over its radio

— The other node listens for radio messages and signals if it is getting brighter or
darker
— Brighter - The green LED of the receiver is set
— Darker - The red LED of the receiver is set
— No significant change - The yellow LED is set

Light sensor

Ad Hoc and Sensor Networks — Philipp Sommer 4



Exercise 2

Optical Communication using Morse Codes

on off on off

A

Infrared LED

Sender Receiver

A A

/
Y/
2\

onoffon off ' | '



http://www.tinyos.net/scoop/
http://www.tinyos.net/scoop/

TinyOS

e TinyOS is an operating system for sensor nodes
— Open source project with a strong academic background
— Hardware drivers, libraries, tools, compiler

e TinyOS applications are written in nesC
— Cdialect with extra features
— nesC compiler converts your application into plain C code

S

http://www.tinyos.net

TiNny




NesC/TinyOS Programming Model

e Programs are built out of components

e Components use and provide interfaces

Interfaces are

interface Send { bidirectional

command error_t send(message_t* msg);
event void sendDone(message_t* msg);

e Components are wired together by connecting
interface users with interface providers



TinyOS Concurrency Model

* Tasks are executed sequentially by the TinyOS scheduler

— only one task can be active at a time
— Longer background processing jobs

post sendMessage();

* Events (callbacks)

task void sendMessage() {
call Send.send(...);

}

— Short duration (hand off computation to tasks if necessary)

event void Send.sendDone(...) {
... (do something)

}




Split-Phase Operations in TinyOS

T SR SR

Java TinyOS

void sendMessage() { task void sendMessage() {
Message m = new Message(); message_t* msg = &msgBuffer;

// command is non-blocking

// send operation is blocking call Send.send(msg);
Send.send(m); // do something here
// do next task }
nextTask();

} event void Send.sendDone(...) {

// send completed, post next task
post nextTask();

)



Final Remarks

e Code skeletons for both applications are provided on the lab PC. All
software required during the lab is already pre-installed.

e The lab work place is in the ETL building (ETL F29).
Keys must be fetched in our office ETZ G64.1 when your lab slot starts.

» Register for your lab time slot on the course website




