Geo-Routing
Chapter 2
Application of the Week: Mesh Networking (Roofnet)

- Sharing Internet access
- Cheaper for everybody
- Several gateways → fault-tolerance
- Possible data backup
- Community add-ons
 - I borrow your hammer, you copy my homework
 - Get to know your neighbors
Rating

<table>
<thead>
<tr>
<th>Area maturity</th>
<th>First steps</th>
<th>Text book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical importance</td>
<td>No apps</td>
<td>Mission critical</td>
</tr>
<tr>
<td>Theory appeal</td>
<td>Booooooooring</td>
<td>Exciting</td>
</tr>
</tbody>
</table>
Overview

- Classic routing overview
- Geo-routing
- Greedy geo-routing

- Euclidean and Planar graphs
- Face Routing
- Greedy and Face Routing
- 3D Geo-Routing
What is Routing?
Routing is the act of moving information across a network from a source to a destination. (CISCO)

The simplest form of routing is “flooding”: a source s sends the message to all its neighbors; when a node other than destination t receives the message the first time it re-sends it to all its neighbors.

- simple (sequence numbers)
- a node might see the same message more than once. (How often?)
- what if the network is huge but the target t sits just next to the source s?

We need a smarter routing algorithm
Classic Routing 2: Link-State Routing Protocols

- Link-state routing protocols are a preferred iBGP method (within an autonomous system) in the Internet

- Idea: periodic notification of all nodes about the complete graph
- Routers then forward a message along (for example) the shortest path in the graph
 - message follows shortest path
 - every node needs to store whole graph, even links that are not on any path
 - every node needs to send and receive messages that describe the whole graph regularly
Classic Routing 3: Distance Vector Routing Protocols

• The predominant method for wired networks
• Idea: each node stores a routing table that has an entry to each destination (destination, distance, neighbor)
• If a router notices a change in its neighborhood or receives an update message from a neighbor, it updates its routing table accordingly and sends an update to all its neighbors
 + message follows shortest path
 + only send updates when topology changes
 – most topology changes are irrelevant for a given source/destination pair
 – every node needs to store a big table
 – count-to-infinity problem

<table>
<thead>
<tr>
<th>Dest</th>
<th>Dir</th>
<th>Dst</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>t</td>
<td>b</td>
<td>2</td>
</tr>
</tbody>
</table>
Discussion of Classic Routing Protocols

- **Proactive Routing Protocols**

 Both link-state and distance vector are “proactive,” that is, routes are established and updated even if they are never needed.

 If there is **almost no mobility**, proactive algorithms are superior because they never have to exchange information and find optimal routes easily.

- **Reactive Routing Protocols**

 Flooding is “reactive,” but does not scale

 If **mobility is high** and data transmission rare, reactive algorithms are superior; in the extreme case of almost no data and very much mobility the simple flooding protocol might be a good choice.

There is **no “optimal” routing protocol**; the choice of the routing protocol depends on the circumstances. Of particular importance is the mobility/data ratio.
Routing in Ad-Hoc Networks

- **Reliability**
 - Nodes in an ad-hoc network are not 100% reliable
 - Algorithms need to find alternate routes when nodes are failing

- **Mobile Ad-Hoc Network (MANET)**
 - It is often assumed that the nodes are mobile (“Car2Car”)

- **10 Tricks → 2^{10} routing algorithms**
- In reality there are almost that many proposals!

- **Q**: How good are these routing algorithms?!? Any hard results?
 - **A**: Almost none! Method-of-choice is simulation…
 - “If you simulate three times, you get three different results”
Geometric (geographic, directional, position-based) routing

• …even with all the tricks there will be flooding every now and then.

• In this chapter we will assume that the nodes are location aware (they have GPS, Galileo, or an ad-hoc way to figure out their coordinates), and that we know where the destination is.

• Then we simply route towards the destination
Geometric routing

- Problem: What if there is no path in the right direction?

- We need a guaranteed way to reach a destination even in the case when there is no directional path…

- Hack: as in flooding nodes keep track of the messages they have already seen, and then they backtrack* from there

*backtracking? Does this mean that we need a stack?!!?
Geo-Routing: Strictly Local
Greedy Geo-Routing?
Greedy Geo-Routing?
What is Geographic Routing?

- A.k.a. geometric, location-based, position-based, etc.

- Each node knows its own position and position of neighbors
- Source knows the position of the destination
- **No routing tables stored in nodes!**

- Geographic routing makes sense
 - Own position: GPS/Galileo, local positioning algorithms
 - Destination: Geocasting, location services, source routing++
 - Learn about ad-hoc routing in general
Greedy routing

• Greedy routing looks promising.

• Maybe there is a way to choose the next neighbor and a particular graph where we always reach the destination?
Examples why greedy algorithms fail

- We greedily route to the neighbor which is closest to the destination: But both neighbors of x are not closer to destination D

- Also the best angle approach might fail, even in a triangulation: if, in the example on the right, you always follow the edge with the narrowest angle to destination t, you will forward on a loop $v_0, w_0, v_1, w_1, \ldots, v_3, w_3, v_0, \ldots$
Euclidean and Planar Graphs

- Euclidean: Points in the plane, with coordinates, e.g. UDG

- UDG: Classic computational geometry model, special case of disk graphs

- All nodes are points in the plane, two nodes are connected if and only if their distance is at most 1, that is \(\{u,v\} \in E \iff |u,v| \leq 1 \)

 + Very simple, allows for strong analysis
 - Not realistic: “If you gave me $100 for each paper written with the unit disk assumption, I still could not buy a radio that is unit disk!”
 - Particularly bad in obstructed environments (walls, hills, etc.)

- Natural extension: 3D UDG
Euclidean and Planar Graphs

- Planar: can be drawn without “edge crossings” in a plane

- A planar graph already drawn in the plane without edge intersections is called a plane graph. In the next chapter we will see how to make a Euclidean graph planar.
Breakthrough idea: route on faces

• Remember the faces…

• Idea:
 Route along the boundaries of the faces that lie on the source–destination line
Face Routing

0. Let f be the face incident to the source s, intersected by (s,t)

1. Explore the boundary of f; remember the point p where the boundary intersects with (s,t) which is nearest to t; after traversing the whole boundary, go back to p, switch the face, and repeat 1 until you hit destination t.
Face Routing Properties

• All necessary information is stored in the message
 – Source and destination positions
 – Point of transition to next face

• Completely local:
 – Knowledge about direct neighbors’ positions sufficient
 – Faces are implicit

• Planarity of graph is computed locally (not an assumption)
 – Computation for instance with Gabriel Graph

“Right Hand Rule”
Face Routing Works on Any Graph
Face routing is correct

• Theorem: Face routing terminates on any simple planar graph in O(n) steps, where n is the number of nodes in the network

• Proof: A simple planar graph has at most 3n–6 edges. You leave each face at the point that is closest to the destination, that is, you never visit a face twice, because you can order the faces that intersect the source—destination line on the exit point. Each edge is in at most 2 faces. Therefore each edge is visited at most 4 times. The algorithm terminates in O(n) steps.

Definition: $f \in O(g) \rightarrow \exists c>0, \forall x>x_0: f(x) \leq c \cdot g(x)$
Face Routing

- Theorem: Face Routing reaches destination in $O(n)$ steps
- But: Can be very bad compared to the optimal route
Is there something better than Face Routing?

How can we improve Face Routing?
Is there something better than Face Routing?

• How to improve face routing? A proposal called “Face Routing 2”

• Idea: Don’t search a whole face for the best exit point, but take the first (better) exit point you find. Then you don’t have to traverse huge faces that point away from the destination.

• Efficiency: Seems to be practically more efficient than face routing. But the theoretical worst case is worse – $O(n^2)$.

• Problem: if source and destination are very close, we don’t want to route through all nodes of the network. Instead we want a routing algorithm where the cost is a function of the cost of the best route in the unit disk graph (and independent of the number of nodes).
Bounding Searchable Area

\[S \]
Adaptive Face Routing (AFR)

• Idea: Use face routing together with “growing radius” trick:

• That is, don’t route beyond some radius r by branching the planar graph within an ellipse of exponentially growing size.
AFR Example Continued

- We grow the ellipse and find a path
AFR Pseudo-Code

0. Calculate $G = GG(V) \cap UDG(V)$
 Set c to be twice the Euclidean source—destination distance.

1. Nodes $w \in W$ are nodes where the path $s-w-t$ is larger than c. Do face routing on the graph G, but without visiting nodes in W. (This is like pruning the graph G with an ellipse.) You either reach the destination, or you are stuck at a face (that is, you do not find a better exit point.)

2. If step 1 did not succeed, double c and go back to step 1.

- Note: All the steps can be done completely locally, and the nodes need no local storage.
The $\Omega(1)$ Model

- We simplify the model by assuming that nodes are sufficiently far apart; that is, there is a constant d_0 such that all pairs of nodes have at least distance d_0. We call this the $\Omega(1)$ model.

- This simplification is natural because nodes with transmission range 1 (the unit disk graph) will usually not “sit right on top of each other”.

- Lemma: In the $\Omega(1)$ model, all natural cost models (such as the Euclidean distance, the energy metric, the link distance, or hybrids of these) are equal up to a constant factor.

- Remark: The properties we use from the $\Omega(1)$ model can also be established with a backbone graph construction.
Analysis of AFR in the $\Omega(1)$ model

- Lemma 1: In an ellipse of size c there are at most $O(c^2)$ nodes.

- Lemma 2: In an ellipse of size c, face routing terminates in $O(c^2)$ steps, either by finding the destination, or by not finding a new face.

- Lemma 3: Let the optimal source—destination route in the UDG have cost c^*. Then this route c^* must be in any ellipse of size c^* or larger.

- Theorem: AFR terminates with cost $O(c^*^2)$.
- Proof: Summing up all the costs until we have the right ellipse size is bounded by the size of the cost of the right ellipse size.
Lower Bound

- The network on the right constructs a lower bound.
- The destination is the center of the circle, the source any node on the ring.
- Finding the right chain costs $\Omega(c^2)$, even for randomized algorithms.
- Theorem: AFR is asymptotically optimal.
Non-geometric routing algorithms

- In the $\Omega(1)$ model, a standard flooding algorithm enhanced with growing search area idea will (for the same reasons) also cost $O(c^2)$.

- However, such a flooding algorithm needs $O(1)$ extra storage at each node (a node needs to know whether it has already forwarded a message).

- Therefore, there is a trade-off between $O(1)$ storage at each node or that nodes are location aware, and also location aware about the destination. This is intriguing.
GOAFR – Greedy Other Adaptive Face Routing

- Back to geometric routing...
- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing
 - Route greedily as long as possible
 - Circumvent “dead ends” by use of face routing
 - Then route greedily again

Other AFR: In each face proceed to point closest to destination
GOAFR+ – Greedy Other Adaptive Face Routing

• Early fallback to greedy routing:
 – Use counters p and q. Let u be the node where the exploration of the current face F started
 • p counts the nodes closer to t than u
 • q counts the nodes not closer to t than u
 – Fall back to greedy routing as soon as \(p > \sigma \cdot q \) (constant \(\sigma > 0 \))

Theorem: GOAFR is still asymptotically worst-case optimal… …and it is efficient in practice, in the average-case.

• What does “practice” mean?
 – Usually nodes placed uniformly at random
Average Case

- Not interesting when graph not dense enough
- Not interesting when graph is too dense
- **Critical density range** ("percolation")
 - Shortest path is significantly longer than Euclidean distance

![Graphs showing different density levels: too sparse, critical density, too dense](image)
Critical Density: Shortest Path vs. Euclidean Distance

- Shortest path is significantly longer than Euclidean distance

- Critical density range mandatory for the simulation of any routing algorithm (not only geographic)
Randomly Generated Graphs: Critical Density Range

Shortest Path Span

Connectivity

Greedy success

Shortest Path Span
\[\frac{|p^*|}{|st|} \]

Network Density [nodes per unit disk]
Simulation on Randomly Generated Graphs

Performance

Network Density [nodes per unit disk]

AFR

Greedy success

Connectivity

GOAFR+

Critical
A Word on Performance

• What does a performance of 3.3 in the critical density range mean?

• If an optimal path (found by Dijkstra) has cost c, then GOAFR+ finds the destination in $3.3 \cdot c$ steps.

• It does not mean that the path found is 3.3 times as long as the optimal path! The path found can be much smaller…

• Remarks about cost metrics
 – In this lecture “cost” $c = c$ hops
 – There are other results, for instance on distance/energy/hybrid metrics
 – In particular: With energy metric there is no competitive geometric routing algorithm
GOAFR: Summary

Greedy Routing
Face Routing
Adaptive Face Routing
GOAFR
GOAFR*

Average-case efficiency
Worst-case optimality

“Practice”
“Theory”
3D Geo-Routing

- The world is not flat. We can certainly envision networks in 3D, e.g. in a large office building. Can we geo-route in three dimensions? Are the same techniques possible?

- Certainly, if the node density is high enough (and the node distribution is kind to us), we can simply use greedy routing. But what about those local minima?!?

- Is there something like a face in 3D?

- The picture on the right is the 3D equivalent of the 2D lower bound, proving that we need at least OPT^3 steps.
3D Geo Routing

How would you do 3D routing?
Routing with and without position information

- **Without** position information:
 - Flooding → does not scale
 - Distance Vector Routing → does not scale
 - Source Routing
 - increased per-packet overhead
 - no theoretical results, only simulation

- **With** position information:
 - Greedy Routing
 → may fail: message may get stuck in a “dead end”
 - Geometric Routing
 → It is assumed that each node knows its position
Summary of Results

- If position information is available geo-routing is a feasible option.
- **Face routing** guarantees to deliver the message.
- By restricting the search area the efficiency is OPT^2.
- Because of a lower bound this is asymptotically optimal.
- Combining greedy and face gives efficient algorithm.
- **3D geo-routing** is impossible.
- Even if there is no position information, some ideas might be helpful.

- Geo-routing is probably the only class of routing that is well understood.
- There are many adjacent areas: topology control, location services, routing in general, etc.
Open problem

• Geo-routing is one of the best understood topics. In that sense it is hard to come up with a decent open problem. Let’s try something wishy-washy.

• We have seen that for a 2D UDG the efficiency of geo-routing can be quadratic to an optimal algorithm (with routing tables). However, the worst-case example is quite special.

• Open problem: How much information does one need to store in the network to guarantee only constant overhead?
 – Variant: Instead of UDG some more realistic model
 – How can one maintain this information if the network is dynamic?