
Chapter 8Clock Synchronization8.1 Slide 9/32Theorem 8.1. No matter what clock synchronization algorithm we run, theskew between two neighboring clocks may always be Ω(α log β−ααε D), where D isthe diameter of the network, hardware clocks have a rate between 1−ε and 1+ε(worst case), message delay is between 0 and 1 (worst case), and logical clocksmust run at least at rate α, and at most at rate β. (On the slides we assumedthat α = 1.)Proof. (Sketch) The proof is on a chain of D + 1 nodes v1, v2, . . . , vD+1; we setl0 := D.1 Assume that the nodes run their algorithm for time T0 := 1+ε4ε l0 ≤ l02ε ,all nodes have a hardware clock rate of 1, and all messages are delayed for 1/2time. This situation is indistinguishable for the nodes from a situation wherethe nodes v1, v2, . . . , vD+1 have hardware clock rates 1 + ε, 1 + ε− ε/l0, 1 + ε−2ε/l0, . . . , 1 if we adapt message delays accordingly, i.e., “down” messages areslower than “up” messages. Since the difference between the hardware clockrates between neighbors is exactly εl0 and T0 ≤ l02ε , we need to modify themessage delays by at most εl0 · l02ε = 1/2, i.e., all message delays are still in thevalid range of [0, 1].2Since the fastest node is running 1 + ε times faster than in the originalexecution, and the executions are indistinguishable, it reaches the logical clockvalue that it reached at time T0 already at time T �0 := l04ε . Since the slowestnode still runs at rate 1, it reaches the same logical clock value at time T �0 inboth executions. As the fastest node increased its logical clock at least at rate αin the interval T0 − T �0 = l04 , the clock skew between the fastest and the slowestnode increased by at least α4 l0 until time T �0.Now, in a second phase, we give the nodes time to adapt again, startingat time T �0. Assume that the nodes continue to run their algorithm for T1 :=α(1+ε)16(β−α) l0 ≤ α8(β−α) l0 time, all nodes have a hardware clock rate of 1, andmessages again take time 1/2. Since the lagging bottom node can run at mostat rate β, and the top node must run at least at rate α, the clock skew between1The proof also works on general graphs.2In this short summary we will not prove this formally, but we encourage the reader toverify it with an example. 9



10 CHAPTER 8. CLOCK SYNCHRONIZATIONthese nodes reduces by at most (β − α) · α8(β−α) l0 = α8 l0, i.e., the clock skewis still at least α8 l0. Because of the pigeonhole principle there is a sub-chain oflength l1 := αε4(β−α) l0 with at clock skew of at least α8 l1 between the top andthe bottom node of the sub-chain. Note that T1 = 1+ε4ε l1 ≤ l12ε . We can againchange the execution indistinguishably by setting the hardware clock rates alongthis subchain to 1 + ε, 1 + ε − ε/l1, 1 + ε − 2ε/l1, . . . , 1 and adapt the messagedelays (which again lie in the interval [0, 1]). Again, the topmost node reachesthe same logical clock value at time T �1 := l14ε that it reached before at time T1.Due to the fact that it increased its logical clock value at least at rate α in theinterval T1 − T �1 = l14 , the clock skew between the fastest and the slowest nodein this sub-chain increased by at least α4 l1, i.e., the clock skew is now at leastα4 l1 + α8 l1 = 3α8 l1.Now we repeat this process recursively for sub-chains of lengths l2, l3, etc.Since li+1 is a factor of αε4(β−α) smaller than li, we can only do this log4(β−α)/(αε) Doften. However, in each of these log4(β−α)/(αε) D phases, the average clockskew between the top and the bottom node of a sub-chain will grow by α8 .In other words, the skew between some neighboring nodes will be at leastΩ(α log β−ααε D).


