

 $\mathrm{HS}\ 2010$

Dr. K. Lampka / J. Smula, T. Langner

Discrete Event Systems

Solution to Exercise Sheet 13

1 Computation Tree Logic Model Checking

a) The graph of the Kripke structure ${\cal K}$ looks as follows:

b) The computation tree for the initial state s_0 upto depth 7 looks as follows:

- c) Ω₃ is incorrect, since the existence quantor is only defined in combination with a temporal operator (○, □, ∪, ◊). Here it is used with a state formula.
 Ω₅ is incorrect, since the operator ∃○ is only defined for a state formula. (true ∪ black), however, is a path formula.
- d) See solution to exercise sheet 14.

2 Petri Nets [Exam!]

a) $f_1(x,y) = 5x + y$:

b) $f_2(x,y) = x - 2y$:

c) $f_3(x,y) = x \cdot y$:

3 Basic Properties of Petri Nets

A petri net is k-bounded, if there is no fire sequence that makes the number of tokens in one place grow larger than k. It is obvious that petri net N_2 is 1-bounded if $k \leq 1$. This holds because in the initial state there is only one token in the net, and in the case $k \leq 1$ no transition increases the number of tokens in N_2 . If $k \geq 2$, the number of tokens in p_1 can grow infinitely large by repeatedly firing t_1 , t_3 and t_4 . So, the petri net N_2 is unbounded for $k \geq 2$.

A petri net is deadlock free if no fire sequence leads to a state in which no transition is enabled. If k = 0, N_2 is not deadlock-free. The fire sequence t_1, t_3, t_4 causes the only existing token to be consumed and hence, there is no enabled transition any more. For $k \ge 1$, however, no deadlock can occur.

4 Reachability Analysis for Petri Nets

- a) Petri nets may possess infinite reachability graphs, e.g. N_2 with $k \ge 2$. If the state in question is actually reachable in such a petri net, the reachability algorithm will eventually terminate. If it is not reachable, the algorithm will never be able to determine this with absolute certainty (cf. halting problem).
- b) We determine the incidence matrix of the petri net as explained in the lecture.

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 & 2\\ 1 & -1 & -1 & 0\\ 0 & 0 & 1 & -1 \end{pmatrix}$$

We are interested in whether the state $\vec{s} = (101, 99, 4)$ is reachable from the initial state $\vec{s_0} = (1, 0, 0)$. If the equation system $\mathbf{A} \cdot \vec{f} = \vec{s} - \vec{s_0}$ has no solution, we know that the state \vec{s} is not reachable from s_0 . "Unfortunately",

$$\begin{pmatrix} -1 & 1 & 0 & 2\\ 1 & -1 & -1 & 0\\ 0 & 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} f_1\\ f_2\\ f_3\\ f_4 \end{pmatrix} = \begin{pmatrix} 100\\ 99\\ 4 \end{pmatrix}$$

is satisfiable. To show that \vec{s} is reachable from $\vec{s_0}$, we have to give a firing sequence through which we get from $\vec{s_0}$ to \vec{s} . From the last equation of the above equation system, we know that $f_3 = f_4 + 4$. Hence, in the desired firing sequence, f_3 is fired four times more than f_4 . However, \vec{f} does not tell us about the firing order. Considering the petri net, we can see that – starting from $\vec{s_0}$ – the number of tokens in p_1 increases by one after firing t_1, t_3 , and t_4 in this order. Repeating this for 203 times yields the state (204, 0, 0). Firing t_1 for 103 times followed by firing t_3 for four times finally yields state \vec{s} .