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Part I

Introduction

Motivation (1)

In the following we will develop a concise (mathematical) framework for

formally describing systems of interest (→ formal model).

This framework allows one to formally, i. e., mathematically reason

about a model’s and hence a system’s correctness w. r. t. dedicated

properties, e. g. deadlock-freeness etc.

In principle we could start with any programming language. However,

their interpretation is very complicated (address arithmetic, arbitrary data

types, ...). Also only certain aspects of a system matter, where one may

abstract away many details. Hence it appears useful to follow a more

abstract view and speak here only about very simple “languages” for

describing systems. Such methods are commonly denoted as high-level

model description methods.
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The dining philosophers Dijkstra’65 (en.wikipedia.org/wiki/Dining philosophers problem)

There are N philosophers sitting around a circular table either thinking or

eating pasta. Each philosopher needs his left and right fork to eat, but there is

only one fork between each 2 philosophers. Design an algorithm that the

philosophers can follow.
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Consider the following protocol (= sequence of interaction)

void philosopher()

while(1) {
think();

get left fork();

get right fork();

eat();

put left fork();

put right fork();

}

Properties: Deadlock? Starvation-free? Etc.
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Motivation (2)

Even though the high-level model description methods appear very

simple, they possess clearly defined (execution or operational)

semantics. These semantics allow us to map them to graphs.

These graphs represent all possible behaviors of the specified

high-level description.

Hence the basic objects which represent the entities to be studied

are graphs. Therefore we will briefly re-visit some basic definitions,

which you probably have already seen before.

Don’t mind the formal notation, this will be made clear by examples

and allows you to understand the resp. literature.

5–18

Part II

Basic (formal) Facts about Graphs

Preliminaries – Foundations of Graphs (at a glance)
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Definition 2.1: Graph

A graph G is a pair (V,E) where

1 V is a discrete set of vertices (or nodes)

{v1, . . . , vm}
2 E ⊆ V× V is a discrete set of pairs

{(vi , vj) | for some i , j ∈ {1, . . . ,m}}. One

commonly denotes these pairs as edges or arcs.
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Preliminaries – Foundations of Graphs (at a glance)
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Definition 2.2: Directed Graph (Digraph)

If the elements of E are ordered in such a way

that (v ,w) 6≡ (w , v) the elements of E are

denoted as directed edges or directed arcs.

A graph with such a property is denoted

directed graph or digraph for short.
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Preliminaries – Foundations of Graphs (at a glance)

1 In a digraph and for an ordered pair (u, v) ∈ E vertex u is denoted

as predecessor or parent of vertex v and vertex v is denoted as

successor or child of vertex u.

2 This can be extended to the level of sets of children and parent

nodes as follows:

Post(u) := {v ∈ V | (u, v) ∈ E}
is the set of all children or direct successors of a vertex u.

Pre(v) := {u ∈ V | (u, v) ∈ E}
is the set of all parents or direct predecessors of a vertex v .

3 The above sets are very helpful, once we want to operate on graphs.

−→ Question 2.1: Please write down an algorithm which check if a node n is

contained in a graph
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Preliminaries Reachability Check

Check reachability of a node n
(1) Nodes2beTraversed := {v0}, Nodes := ∅, Edges := ∅

(2) While Nodes2beTraversed 6= ∅
(3) vs := getElement(Nodes2beTraversed) //get node to be processed next

(4) Edges := PostSetEdges(v) //get set of outgoing edges of node vs

(5) While Edges 6= ∅ //still edges we did not travers so far?

(6) e := pop(Edges)//pick one of the outgoing edges of node vs

(7) vt := get2ndElement(e) //extract children node w. r. t. edge e

(8) if (vt == n) return(YES)//did we reach node n?

(9) if (vt 6∈ Nodes) // did we reach a new node vt to be tra-

versed; avoid being trapped in cycles.
(10) insert(vt ,Nodes)// put vt in set of known states

(11) insert(vt ,Nodes2beTraversed)// put vt in set of states to be traversed

(12) remove(e,Edges) //done with edge e

(13) remove(vs ,Nodes2beTraversed) //done with node vs

(14) return(NO)

Please clarify the functions PostSetEdges.

Order of traversal: depth-first-search or breadth first search?
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Preliminaries – Foundations of Graphs (at a glance)
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Definition 2.3: Weighted Graphs

If the edges of a graph are labelled with

elements from R one speaks of a weighted

graph.

In fact the set of edges of a weighted digraph

is a ternary relation (set of triples):

E ⊆ V×R× V.

Function W : V× V→ R gives one the

weight associated with the respective edge

(u, x , v): (u, x , v) ∈ E⇒W(u, v) = x and

W(u, v) := 0 for all triples not contained in E.
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Preliminaries – Foundations of Graphs (at a glance)
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Definition 2.4: Labelled Graphs

If the edges of a graph are labelled with elements

from a finite set, e. g. l ∈ Act one speaks

commonly of a labelled graph.

In fact the set of edges of a labelled digraph is

once again a ternary relation: E ⊆ V×Act × V.

Note:

A labelled graph is also often refered to as labelled transition system ( LTS ),

where instead of vertices one speaks of states.
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Preliminaries – Labelled Transition System

Definition 2.5: Labelled Transition System ( LTS )

A LTS is a quadruple T := (S, S0,Act,E), where

1 S := {~s1, . . . ,~sn} is an ordered (indexed) set of states with

2 S0 as the set of initial states.

3 Act is the discrete set of transition labels,

4 E ⊆ S×Act × S is an ordered (indexed) set of labelled state-to-state

transitions.
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Preliminaries – Labelled Transition system
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1 S := {

2 S0 :=

3 Act := {

4 E := {
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Preliminaries – Termination and Determinism of LTS

Note:

LTS are essentially the semantics of the here discussed high-level mod-

elling techniques, where the techniques of model checking allow us to rea-

son about their properties. In the following we briefly strive some important

definitions.

A LTS T is defined non-terminal if each state has at least one

out-going edge otherwise T is called terminal.

A LTS T is defined deterministic if each state has at most one

out-going edge with the same edge label otherwise T is denoted as

non-deterministic.

Are non-deterministic finite LTS more expressive than deterministic ones?
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Preliminaries – Termination and Determinism (Examples)
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Part III

Backus-Naur-Form

Backus-Naur-Form

BNF is a method for compactly writing down production rules (of a

context-free grammar). The production rules employ variables (capital

letters) and terminal symbols (lower case letters).

A ::= true | α ∈ AP | ¬A | A ∧ A | (A)

is read as follows: each occurence of variable A can be replaced by the

constant true, a terminal symbol of set AP or ¬A or A ∧ A or (A). One

may note that A may not only be a non-terminal symbol (variable), it can

also be a word produced by the above grammar. This is, because it also

appears on the left-hand side.

−→ Question 3.1: What does we above rule define?
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