
Specification models and their analysis

– Petri Nets –

Kai Lampka

December 10, 2010

1–30

Part I

Petri Nets – Basics

Petri Nets – Introduction

A Petri Net (PN) is a weighted(?), bipartite(?) digraph(?) invented by Carl

Adam Petri in his PhD-thesis “Kommunikation mit Automaten” (1962).

Many flavors of Petri nets are in use; we start with a simple kind.

Example:

insertCoin

lock_door

wait

finished

idle

wash

Circles P := {wait,wash, . . .} (set of places)

Boxes T := {insertCoin, lock door, . . .} (set of transitions)

Arcs C := {. . . , (lock door,wash), . . .} (set of edges)

Weights W := here constant 1 for each arc

Initial marking M0 := { m0(wait) := 0,

m0(wash) := 0,m0(idle) := 1}.

3–30

Definition 1.1: (Weigthed) Petri Net

A Petri net (PN) P is a 5-tuple (P,T ,C ,W,M0), where

1 P := {p1, . . . , pm} is a finite, ordered (indexed) set of places and

2 T := {t1, . . . , tn} is a finite, ordered (indexed) set of transitions,

3 C ⊆ (P × T) ∪ (T × P), is a connection or flow relation,

4 W : C 7→ N0 assigns a weight to each element of C and

5 m0 : p ∈ P 7→ N0 gives the initial marking for place p, i. e., it assigns a

number of token to place p. The set of all such initial markings is denoted

M0 (= the initial marking of P).

1 An ordering defined on the places yields that the place markings m0(pi) can be

understood as the component of a vector ~s0[i] s.t. we can map the initial

marking M0 to the dedicated vector ~s0. Note, ~si gives the number of tokens

currently contained in place pi .

2 A vector of this kind is denoted in the following as state vector, as it uniquely

defines the state of the PN we also simply say state.

4–30

Petri Nets – Introduction

insertCoin

lock_door

wait

finished

idle

wash

the

initial state of the PN

~s0 = (m0(wait),m0(wash),

m0(idle))

= (0, 0, 1)

insertCoin

lock_door

wait

finished

idle

wash

another state of the PN

~s = (1, 1, 1)

insertCoin

lock_door

wait

finished

idle

wash

and another state

~s = (1, 1, 0)

Note:

For differing among the different states of a PN we index them accordingly,

i. e., we write ~sk when referring to the k-th state.

5–30

Petri Nets – Operational Semantic (Pre - and Post sets)

Definition 1.2: Pre - and Post sets

1 Pre set of a transition t ∈ T : •t := {p|(p, t) ∈ C}
2 Post set of a transition t ∈ T : t• = {p|(t,p) ∈ C}

analogously we define pre (•p) and post sets (p•) for each place p ∈ P.

t
43

5

2

1

1

p
2

p
6

p
1

•t43 := {

t43• := {

6–30

Petri Nets – Operational Semantic (Enabling)

The operational (or execution) semantic of PN stem from the movement

of tokens in the net:

Transitions consume tokens from input places (pre set).

Transitions add tokens to their output places (post set).

One execute one transition at a time according to a disceret event

system semantic.

Execution of transition is atomic and instantenous (= zero-time).

Thus concurrency of transition’s execution is resolved by their

interleavings (= interleaving semantic).

But when can we actually execute transitions?

7–30

Petri Nets – Operational Semantic (Enabling)

Enabled transition:

a transition t ∈ T is enabled in a state ~s, denoted ~s B t, iff the

places of its pre set hold sufficiently many tokens

~s B t ⇔ (∀p ∈ •t : ~s [p] ≥ W(p, t))

Enabling state:

a state ~s is denoted enabling for a transition t iff ~s B t holds.

Once a transition is enabled in a state ~s it can be executed (=fired):

When we execute an enabled transition we destroy suffi-

ciently many tokens on the input places and generate the

required number of tokens on the output places of t.

8–30

Petri Nets – Operational Semantic (Firing)

Given a state ~s of a PN we want to compute its successor state ~s ′ w. r. t.

an enabled transition. To do so we define a transfer or transition function

of a transition t as follows:

δ(~s, t) := ~s ′ with~s ′ [i] :=





~s [i] ⇔ pi /∈ t • ∪ • t

~s [i]−W(pi , t) ⇔ pi ∈ •t ∩ t•
~s [i] +W(t, pi) ⇔ pi ∈ t • ∩ •t
~s [i]−W(pi , t) +W(t, pi) ⇔ pi ∈ t • ∩ • t

if ~s B t then δ(~s, t) := ~s ′ else undefined.

With δ we can construct sets of triples (~s, t,~s ′), where we use the

notation ~s
t→ ~s ′.

9–30

Petri Nets – Reachability set

Moving the tokens around the net by executing enabled transitions is

denoted token game; essentially executing δ.

Executing transition function δ in a fixed point iteration, starting

with state ~s0, yields a set of states, denoted as a PN’s set of

reachable states or reachability set.

Definition 1.3: Reachability set of a PN

1 S0 := {~s0}
2 Si := Si−1 ∪ {δ(~s, t) | ∀~s ∈ Si−1,∀t ∈ T where~s B t}
3 we are intrested in the largest of such sets S0 ⊆ S1 ⊆ . . . ⊆ Sk which

we denote as set of reachable states S of a PN P and w. r. t. ~s0.

Note:

This allows one to construct a (not necessarily finite) LTS for each PN and an

initial state ~s0. Such an LTS constitutes the semantic model of a PN.
10–30

Petri Nets – Reachability graph

Definition 1.4: Reachability graph

A reachability graph RG (P,~s0) of a PN P and its initial state ~s0 is a LTS

L(S,S0,Act,E) with

S which is the set of reachable states of the PN.

S0 := {~s0} with ~s0 as the initial state of the PN

Act which is the set of the transition labels of the PN

E ⊆ S×Act × S induced by the PN as follows:

(~s ∈ S ∧~s B t)⇒
(
~s

t→ δ(~s, t) ∈ E)
)

11–30

Petri Nets – Token game (Reachability of states)

One the basis of the token game we can now pose interesting questions

about the properties of a PN and ultimately about the modeled system

itself. E.g.:

Can we reach a state s.t. each place holds at least N but at most K

tokens (under- or overflow of buffers in a chip-design)?

Can we reach a state where everything is blocked?

Such questions are denoted reachability problems, since they can be

solved in principle by checking if a respective state can be derived from

the initial state ~s0 by executing the transitions of a PN.

−→ Example 1.1: Washing maschine

12–30

Petri Nets – Reachability question

We formalize this as follows:

Definition 1.5: Reachability problem/question

Given a high-level model which can be mapped to a LTS, e. g. a PN P

and an initial (system) state ~s0 the reachability question answers the

question, if it is possible to reach a dedicated state ~sb by executing a

sequence of transition (ti , . . . , tj).

Formally we are looking for a sequence of state-to-state transitions in the

LTS of the high-level model s.t. the reach state ~sb. With σ := ti , tj . . . tk

one also writes ~s0
σ→ ~sb for indicating that ~sb can be reached by executing

transition sequence σ.

13–30

Decidability

Recall: A yes/no-question is decidable if and only if there is a

computation which after finitely many steps returns with either yes

or no.

A yes/no-question is semi-deciable if and only if the computation

may return after finitely many steps with either a yes or no answer .

Is reachability for PN decidable? How would you proceed?

14–30

Petri Nets – How-to solve the reachability problem

There are several ways to answer this question, we discuss two

semi-decision procedures, e. g. the methods are based on necessary (not

sufficient!) conditions.

Algebraic method

Solution of a system of linear equations (works for standard PN only).

Absence of solution implies non-reachability of the resp. state. In

case of a sloution we do not know anything.

Algorithmic method (brute-force method)

Generation of the reachability graph and check the states on-the-fly.

Termination implies reachability of the searched state. If the reach-

ability graph is not finite the method may not terminate.

15–30

Petri Nets – Algebraic approach (state equations)

An incidence matrix shows the relationship between two classes of

objects, it possesses one row for each element of class x and one

column for each element of class y .

For a PN the incidence matrix A ∈ N|P|×|T |0 describes the token-flow

w. r. t. place i (row index) and transition j (column index).

aij =W(tj , pi)−W(pi , tj) (gain of place i when transition j fires)

idle

finished

wash

lock_door

2

wait

insertCoin returnCoin

2

trigger

A := ?

~s0 := ?
−→ Example 1.2:

Washing machine

16–30

Petri Nets – Algebraic approach (state equations)

Let the firing vector ~ui ∈ N|T |0 be the indicator for the firing of

transition ti , i. e., ~ui [i] := 1 and ~ui [j] := 0 for i 6= j .

What is the PN semantic of ~sc + A · ~ui?

−→ Example 1.3: Washing machine

For a transition sequence σ of length |σ| one can construct the linear

combination of the firing vectors:

~f :=

|σ|∑

k:=1

~uσ[k]

where σ[k] refers to the k-th transition symbol in the sequence.

−→ Question 1.1: What is the PN semantic of ~sc + A · ~f ?

17–30

Petri Nets – Algebraic approach (state equations)

This allows one to test for the reachability of state ~s as follows:

1 Solve(A · ~f = ~s −~s0)

2 if there is no such solution ~f ∈ N|T |0 than there is no sequence of

transition firings leading from ~s0 to ~s.

3 Formally:

(@~f ∈ N|T |0 : A · ~f = ~s −~s0)⇒ @σ : ~s0
σ→ ~s

−→ Example 1.4: Washing machine

−→ Question 1.2: If there is a solution, what do we know, what can be the problem?

18–30

Petri Nets – Algorithmic approach (enumerative)

1 Algebraic solution based on state equations: Solution of a system

of linear equation is a necessary condition for reachability for

standard PN only.

Absence of solution implies non-reachability of the resp. state.

2 Algorithmic solution (brute-force method): Generation of the

reachability graph and check the states on-the-fly:

Termination implies reachability of the searched state.

19–30

Petri Nets – Explicit Reachability Set Generation

Reachability algorithm
(1) Stmp := ∅, S := ∅
(2) put ~s0 into Stmp

(3) put ~s0 into S
(4) Call function DFS()

(5) Function DFS()

(6) While (Stmp 6= ∅)
(7) take ~s from Stmp

(8) forall t ∈ T do

(9) ~s ′ := δ(~s, t)

(10) If (~s ′ = ~stest) terminate

(11) Else if (~s ′ /∈ S)

(12) put ~s ′ into Stmp

(13) put ~s ′ into S
(14) Else do_nothing

(15) endif

(16) od

(17) endwhile

Once this algorithm termi-

nates we know that ~stest is

reachable or not reachable.

−→ Example 1.5: Washing

machine: DFS/BFS

20–30

Petri Nets – Interleaving semantic

a

p

b

q (1,0) (0,1)

(0,2)(1,1)(2,0)

a b

(0,0)

a

a

b

b b b

b

a a

a

The execution order of transitions is partly uncoordinated.

This yields an exponential size of a PN’s underlying LTS , i. e., |S| is

exponential w. r. t. the number of concurrently enabled transitions

(= state space explosion problem)

−→ Example 1.6: Washing machine with 2 tokens in place idle

21–30

Petri Nets – Properties to be verified

After we have learned how to answer the reachability problem,

(where the proposed techniques may fail), we will now deal with

other properties to be verified.

These properties can be posed as reachability problems. Hence they

can be answered by either directly applying the discussed techniques

or slightly adapted versions.

Excursion:

Properties that can be answered as reachability queries, are denoted safety prop-

erties. But remember, the here presented techniques may fail, but sometimes

we can not do better, depending on the employed high-level formalism, e. g. PN

with inhibitor arcs.

22–30

Deadlock-freeness

One of the most basic properties related to the reachability is the

question about the reachability of deadlocks.

Definition 1.6: Deadlock

A state ~s ∈ S of a PN P is denoted deadlock iff

@t ∈ T : ~s B t

A PN P where no deadlock exists is denoted deadlock-free.

A PN P whose reachability graph is non-terminal is

deadlock-free (or vice-versa)

−→ Example 1.7: Dining philisophers

23–30

K -boundedness

Definition 1.7: K -Boundedness

1 A place pj of a PN P with its initial state ~s0 is denoted K -bounded

iff it never holds more than Kj tokens:

pj is Kj -bounded⇔ ∃Kj ∈ N0 : ∀~s ∈ S : ~s [pj] ≤ Kj

otherwise pj is denoted as unbounded.

2 A PN is denoted K -bounded if each of its places is Kj -bounded, i. e.,

P is denoted K -bounded⇔ ∀pj ∈ P : pj is Kj -bounded

Example: Check a system design for buffer-overflows.

In the literature 1-bounded PN are denoted as safe.

−→ Question 1.3: Is the dining philisopher PN bounded?

24–30

Reversibility and home states

Besides reachability problems, there are properties which ask about the

structure of the reachability graph.

Definition 1.8: Home state

1 A state ~s ′ is denoted as home state iff it is reachable from every

other state, i. e.,

~s ′ is a home state ⇔ ∀~s ∈ S : ∃σ : ~s
σ→ ~s ′.

2 If ~s0 is a home state than the PN P is denoted reversible.

In fact this is much more complex as a simple reachability query.

1 Algebraic approach: can we exploit this one for home state detection?

2 Algorithmic approach: is much more complicated (cycle detetction).

25–30

Petri Nets – Extensions

Many flavors of Petri nets are in use, e.g.

1 PN with inhibitor arcs

2 Colored PN

3 PN with timed behaviour

26–30

Petri Nets – Extensions

PN with inhibitor arcs

idle

finished

wash

lock_door

2

wait

insertCoin returnCoin

2

trigger2

1

A place p connected to a transition t

via an inhibitor arc (⇒ p ∈ 4t)

suppresses the transition’s execution,

i. e., t can only fire iff ~s [p] <W(p, t)

holds.

one solely needs to extend the rule for

enabledness of t:

~s B t ⇔ {(∀p ∈ •t : ~s [p] ≥ W(p, t))

∧ : (∀p ∈ 4t : ~s [p] <W(p, t))}

Note:

PN with more than one inhibitor arc posseses Turing-power, i. e.,

1 they cannot be transformed into regular weighted PN

2 reachability of a state is not decidable; the methods we looked at are

therefore the best one can do.
27–30

Petri Nets – Extensions

Colored PN

idle

wash

lock_door

2

2

finished

returnCoin

insertCoin

rmv

fakeCoin

trigger

wait

Tokens carry colors

Transition are colored, i. e., they only

consume and generate tokens of a

specific color

Colored PN posses Turing-power:

1 cannot be transformed into regular

PN

2 reachability is not decidable.

28–30

Petri Nets – Extensions

Timed PN (TPN)

[0; 8)

idle

wash

lock_door

2

wait

insertCoin

2

finished [3600,5400]

[0.75;1]

[0;0.5]
returnCoin

trigger

Enabled transitions are executed within

some time interval [a, b]

(→ Timed Automata)

29–30

Petri Nets – Extensions

Generalized Stochastic PN

(GSPN)

idle

wash

2

2

insertCoin

rmv; 1

lock_door; 1

finished; λ

returnCoin; 1 trigger

wait

In a GSPN we have 2 types of transitions

Weighted transition w is executed

with some probability:

Probw (~s) :=
W(w)∑

tk∈{t | ~sBt}W(tk)

Markovian transition m is executed

after an exponentially distributed

delay time t

Fdelay of m(t) := 1− e−λmt

(→ Continous-time Markov chains)

30–30

