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Petri Nets — Introduction Definition 1.1: (Weigthed) Petri Net

A Petri net (PN) P is a 5-tuple (P, T, C,W, My), where
A Petri Net (PN) is a weighted(?), bipartite(?) digraph(?) invented by Carl O P:={pi,...,pm} is a finite, ordered (indexed) set of places and

Adam Petri in his PhD-thesis “Kommunikation mit Automaten” (1962). Q@ T :={t1,...,ts} is a finite, ordered (indexed) set of transitions,

Many flavors of Petri nets are in use; we start with a simple kind. @ CC (PxT)U(T x P), is a connection or flow relation,

Example: Q W : C+— Ny assigns a weight to each element of C and
: ) @ mo: p € P— Ny gives the initial marking for place p, i.e., it assigns a
insertCoin g 3 8!
number of token to place p. The set of all such initial markings is denoted
it Circles P := {wait,wash,...} (set of places) Mo (= the initial marking of P).
Boxes T := {insertCoin, lock_door, ...} (set of transitions)
fock door Arcs C:={...,(lock_door,wash),...} (set of edges) X . X .
idle @ An ordering defined on the places yields that the place markings mg(p;) can be
wash Weights W := here constant 1 for each arc understood as the component of a vector 5[i] s.t. we can map the initial
Initial marking Mo := { mo(wait) := 0, marking My to the dedicated vector 5. Note, 5; gives the number of tokens
finished mo(wash) := 0, mo(idle) := 1}. currently contained in place p;.

@ A vector of this kind is denoted in the following as state vector, as it uniquely
defines the state of the PN we also simply say state.

Petri Nets — Introduction

Petri Nets — Operational Semantic (Pre - and Post sets)

M insertCoin M insertCoin M insertCoin
) | { Definition 1.2: Pre - and Post sets
e e . Q Pre set of a transition t € T: et := {p|(p,t) € C}
e tock.door e tock.door e fock-door @ Post set of a transition t € T: te = {p|(t,p) € C}
vash vash vash analogously we define pre (ep) and post sets (pe) for each place p € P.

finished  the finished finished
initial state of the PN another state of the PN and another state .
5 = (mo(wait), mo(wash), §=(11,1) §=(1,1,0) o otsy = {
mo(idle))
=(0,0,1)
o tyze:={
Note:

For differing among the different states of a PN we index them accordingly,
i.e., we write Sk when referring to the k-th state.

Petri Nets — Operational Semantic (Enabling) Petri Nets — Operational Semantic (Enabling)

The operational (or execution) semantic of PN stem from the movement
of tokens in the net: o Enabled transition:
a transition t € T is enabled in a state 3, denoted 51> t, iff the
o Transitions consume tokens from input places (pre set). places of its pre set hold sufficiently many tokens

s>t< (Vpeeot:S[pl >W(p,t
o Transitions add tokens to their output places (post set). (vp [P} = W(p.t)

o Enabling state:

@ One execute one transition at a time accordlng to a disceret event a state S is denoted enabling for a transition t iff§1> t holds.

system semantic.

o Execution of transition is atomic and instantenous (= zero-time). @ Once a transition is enabled in a state § it can be executed (=fired):

@ Thus concurrency of transition's execution is resolved by their When we execute an enabled transition we destroy suffi-

interleavings (= interleaving semantic). ciently many tokens on the input places and generate the

required number of tokens on the output places of t.

But when can we actually execute transitions?

7-30 8-30



Petri Nets — Operational Semantic (Firing) Petri Nets — Reachability set

@ Moving the tokens around the net by executing enabled transitions is
Given a state § of a PN we want to compute its successor state 5/ w.r.t. denoted token game; essentially executing .

an enabled transition. To do so we define a transfer or transition function o Executing transition function & in a fixed point iteration, starting

of a transition t as follows: with state ), yields a set of states, denoted as a PN's set of

5[] e pdteUet reachable states or reachability set.
S[i1— W(pi, t) & pi€otNte Definition 1.3: Reachability set of a PN
8(3,t) :=8" with3' [i]:= ¢ -
S[i1+ W(t, pi) & piEteNet 0 S0 = {5}
SII=W(pi,t) + W(t,pi) < pictenet @ S :=S"1U{6(5, t) | V5 €SVt € T where§ > t}

@ we are intrested in the largest of such sets S C S' C ... C Sk which

o if S1> t then 6(5,t) := 5’ else undefined. we denote as set of reachable states S of a PN P and w.r.t. §,.

o With § we can construct sets of triples (,t,5"), where we use the N
. N N ote:
notation § -5 5.
This allows one to construct a (not necessarily finite) LTS for each PN and an

initial state 5y. Such an LTS constitutes the semantic model of a PN.
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Petri Nets — Reachability graph Petri Nets — Token game (Reachability of states)

One the basis of the token game we can now pose interesting questions
Definition 1.4: Reachability graph about the properties of a PN and ultimately about the modeled system
itself. E.g.:

A reachability graph RG(P,5;) of a PN P and its initial state & is a LTS
L(S,So, Act, E) with

@ S which is the set of reachable states of the PN.

o Can we reach a state s.t. each place holds at least N but at most K

tokens (under- or overflow of buffers in a chip-design)?

@ Can we reach a state where everything is blocked?
o Sg := {5} with 5, as the initial state of the PN yrnng

@ Act which is the set of the transition labels of the PN

o ECS x Act x S induced by the PN as follows:

Such questions are denoted reachability problems, since they can be
solved in principle by checking if a respective state can be derived from

(FeSASD ) = (gi, 5(5,1) IE)) the initial state §; by executing the transitions of a PN.

— Example 1.1: Washing maschine
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Petri Nets — Reachability question Decidability

We formalize this as follows:

Definition 1.5: Reachability problem/question

o Recall: A yes/no-question is decidable if and only if there is a
Given a high-level model which can be mapped to a LTS, e.g. a PN P 'y / . N . Y L
o . . . computation which after finitely many steps returns with either yes
and an initial (system) state 5, the reachability question answers the

or no.
question, if it is possible to reach a dedicated state 5, by executing a

sequence of transition (t;, ..., t;). @ A yes/no-question is semi-deciable if and only if the computation
may return after finitely many steps with either a yes or no answer .
Formally we are looking for a sequence of state-to-state transitions in the Is reachability for PN decidable? How would you proceed?

LTS of the high-level model s.t. the reach state 5,. With o :=t;, t;... t
one also writes 5, % 3, for indicating that 5, can be reached by executing

transition sequence o.
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Petri Nets — How-to solve the reachability problem Petri Nets — Algebraic approach (state equations)

There are several ways to answer this question, we discuss two @ An incidence matrix shows the relationship between two classes of

semi-decision procedures, e. g. the methods are based on necessary (not objects, it possesses one row for each element of class x and one

sufficient!) conditions column for each element of class y.
@ For a PN the incidence matrix A € NEP‘X‘T‘ describes the token-flow

Algebraic method w.r.t. place i (row index) and transition j (column index).

Solution of a system of linear equations (works for standard PN only). W W o olace f wh e
ajj = ti,pi) — i, L ain of place / when transition j fires
Absence of solution implies non-reachability of the resp. state. In v (4, pi) (P &) (g P J )

case of a sloution we do not know anything. ) !
insertCoin retunCoin ¢ 5 o oor

wait
i : A ?
Algorithmic method (brute-force method) .

§0: 7

Generation of the reachability graph and check the states on-the-fly.

lock_door

Termination implies reachability of the searched state. If the reach-

ability graph is not finite the method may not terminate. finished — Example 1.2:

Washing machine
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Petri Nets — Algebraic approach (state equations)

o Let the firing vector u; € N(‘]TI be the indicator for the firing of
transition t;, i.e., 4;[/] := 1 and G;[j] := 0 for i # j.

What is the PN semantic of 5. + A - ii;?

— Example 1.3: Washing machine

o For a transition sequence o of length |o| one can construct the linear

combination of the firing vectors:

i
f = Z ﬁa[k]
k:=1

where o[k] refers to the k-th transition symbol in the sequence.

— Question 1.1: What is the PN semantic of 5. + A - f?

17-30

Petri Nets — Algorithmic approach (enumerative)

@ Algebraic solution based on state equations: Solution of a system
of linear equation is a necessary condition for reachability for
standard PN only.

Absence of solution implies non-reachability of the resp. state.

@ Algorithmic solution (brute-force method): Generation of the

reachability graph and check the states on-the-fly:

Termination implies reachability of the searched state.
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Petri Nets — Algebraic approach (state equations)

This allows one to test for the reachability of state § as follows:

Q Solve(A-F=35-3)
@ if there is no such solution fe NLT‘ than there is no sequence of

transition firings leading from §, to s.
@ Formally:
7 IT| . Z_z_z2 2 9z
FfFeNy A f=5-5)=F0:5>5
— Example 1.4: Washing machine

— Question 1.2: If there is a solution, what do we know, what can be the problem?
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Petri Nets — Explicit Reachability Set Generation

Reachability algorithm

Stmp =0, S:=0 Once this algorithm termi-

nates we know that Sies is

(2) put 5y into Stmp

(3) put § into S reachable or not reachable.
(4) Call function DFS()

(5) Function DFS()

(6)  While (Stmp # 0)

E;; ;iizlslirngS;:p — Example. 1.5: Washing
©) § = 6(5,1) machine: DFS/BFS
(10) If (5 = Siest) terminate

(11) Else if (5/ ¢S)

(12) put §/ into Simp

(13) put 5§/ into S

(14) Else do_nothing

(15) endif

(16) od

(17)  endwhile
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Petri Nets — Interleaving semantic Petri Nets — Properties to be verified

Ta Tb (0,0)
a b
SN AN
;V\ ?
(2,0) (1,1) (0,2)
a_. b a_."-b a.-" b
# N N 4 AN

@ The execution order of transitions is partly uncoordinated.
o This yields an exponential size of a PN'’s underlying LTS, i.e., [S] is
exponential w.r.t. the number of concurrently enabled transitions

(= state space explosion problem)

— Example 1.6: Washing machine with 2 tokens in place idle
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o After we have learned how to answer the reachability problem,
(where the proposed techniques may fail), we will now deal with

other properties to be verified.

@ These properties can be posed as reachability problems. Hence they
can be answered by either directly applying the discussed techniques

or slightly adapted versions.

Excursion:

Properties that can be answered as reachability queries, are denoted safety prop-
erties. But remember, the here presented techniques may fail, but sometimes
we can not do better, depending on the employed high-level formalism, e. g. PN
with inhibitor arcs.
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Deadlock-freeness K-boundedness

One of the most basic properties related to the reachability is the

question about the reachability of deadlocks.

Definition 1.6: Deadlock

A state S € S of a PN P is denoted deadlock iff

AteT: 5>t

@ A PN P where no deadlock exists is denoted deadlock-free.

o A PN P whose reachability graph is non-terminal is
deadlock-free (or vice-versa)

— Example 1.7: Dining philisophers
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Definition 1.7: K-Boundedness

@ A place p; of a PN P with its initial state §, is denoted K-bounded
iff it never holds more than Kj tokens:

pjis Kj-bounded < 3K; € Np : Vs € S : 5[p;] < K;

otherwise p; is denoted as unbounded.

@ A PN is denoted K-bounded if each of its places is Kj-bounded, i.e.,

P is denoted K-bounded < Vp; € P : pjis K;-bounded

o Example: Check a system design for buffer-overflows.

@ In the literature 1-bounded PN are denoted as safe.
— Question 1.3: Is the dining philisopher PN bounded?
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Reversibility and home states Petri Nets — Extensions

Besides reachability problems, there are properties which ask about the

structure of the reachability graph.

Definition 1.8: Home state

Many flavors of Petri nets are in use, e.g.

. S
Q A state 5’ is denoted as home state iff it is reachable from every © PN with inhibitor arcs

other state, i.e.,

@ Colored PN
5'is a home state & V5e€S:30:5 355", @ PN with timed behaviour
@ If 5, is a home state than the PN P is denoted reversible.
In fact this is much more complex as a simple reachability query.
@ Algebraic approach: can we exploit this one for home state detection?
@ Algorithmic approach: is much more complicated (cycle detetction).
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Petri Nets — Extensions Petri Nets — Extensions
PN with inhibitor arcs @ A place p connected to a transition t
o via an inhibitor arc (:> p € At) . Colored PN
insertCoin :52 returnCoin ¢ .5 o cor suppresses the transition’s execution,
"a“Q—OI i.e., t can only fire iff S[p] < W(p, t) e Han” @ Tokens carry colors
: . holds. " retgCoin  erigger o Transition are colored, i.e., they only
lock_door

@ one solely needs to extend the rule for consume and generate tokens of a
enabledness of t:
s>t {(Vp € ot:5[p] > W(p,t))

A (Vp e At:S[p] < W(p, 1))}

specific color
lock_door

finished
@ Colored PN posses Turing-power:

@ cannot be transformed into regular
PN
@ reachability is not decidable.

Note:
PN with more than one inhibitor arc posseses Turing-power, i.e.,
@ they cannot be transformed into regular weighted PN

@ reachability of a state is not decidable; the methods we looked at are

therefore the best one can do.
27-30 28-30

Petri Nets — Extensions Petri Nets — Extensions

Generalized Stochastic PN

(GSPN)
Timed PN (TPN) In a GSPN we have 2 types of transitions

[0; ) tumCo
i T returnCoin
insertCoin 0,05] o
I rigger

insertCoin

@ Weighted transition w is executed

returnCoin; 1 trigger

with some probability:

wait

W(w)
Zt‘kE{t | s>t} W(tk)

@ Markovian transition m is executed

Prob,(5) :=
Enabled transitions are executed within lock_door; 1

lock_door

some time interval [a, b]

(— Timed Automata) after an exponentially distributed

finished y 3600,5400) i
[ I delay time t

Fdelay,of,m(t) =1- eikmt

(— Continous-time Markov chains)
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