255
ETH o

. . T Yy
Eidgendssische Technische Hochschule Ziirich Distributed I;‘:;:““ ‘.
Swiss Federal Institute of Technology Zurich Computing \‘\ Pl
HS 2010 M. Kuhn / S. Welten / Prof. R. Wattenhofer

Distributed Systems Part 11

Solution to Exercise Sheet 5

1 Three Phase Commit

a) The five steps are:

i) Step 2: Participants wait for VOTE request

ii) Step 3: Coordinator waits for votes

v

)
)
ili) Step 4: Participants wait for coordinators decision
) Step 5: Coordinator waits for acknowledgments
)

v) Step 6: Participants wait for COMMIT

b) The reactions are:

i) no one has yet decided on commit, so abort
ii) no one has yet decided on commit, so abort

iii) some processes already know the coordinators decision, some do not. Some might
already aborted, or have sent ACK. The processes have to elect a new coordinator,
the new coordinator has to find out what the decision was and resend the decision to
all the processes which do not already know it.

iv) a crashed processes did not send an ACK. But the transaction can continue because
the correct processes are prepared to commit.

v) the next message must be COMMIT, but committing would violate the non-blocking
property as some processes may not yet have received PREPARE. So the processes
first have to elect an new coordinator, which has to find out about the decision and
inform uninformed processes about it.

¢) Assume there are three processes pj, po and ps. Process p; is the coordinator. All the
processes vote YES on the transaction. p; receives and processes the votes, but ps and p3
detach from p; before receiving the PREPARE message sent by p;.

po is elected as new coordinator. It sees both p, and ps are undecided. Not knowing
their state ps decides to abort, sending the ABORT message. ps receives the message, then
detaches from ps. If now p; and ps3 become connected they cannot progress: p; already
decided to commit, p3 already decided to abort.

2 Paxos Timeline

The timeline consists of two concurrent processes, one on the client () and one on the client R.
In Figure 1 you can see how both clients prepare and propose their values at first, but only the
value of client () gets accepted:

To + 0.0: Q sends a prepare(22,1). As A and B have never accepted a value they reply
with acc(g,0).

To + 0.5: R sends a prepare(33,2). As B and C have never accepted a value they reply
with acc(g,0).

To + 1.0: @ sends a propose(22,1). This is acknowledged by A with ack(22,1) because its
Nmaz = 0. B does not reply as its value n,,q. = 2.

To+2.0: @ sends a prepare(22,3). As B has never accepted a value it replies with acc(g,0).
A returns the latest accepted value: acc(22,1).

To +2.5: R sends a propose(33,2). This is acknowledged by C with ack(33,2). B does not
reply as its value n,qz is 3.

To + 3.0: @ sends a propose(22,3). This is acknowledged by A and B with ack(22,3).

To +4.5: R sends a prepare(33,4). C sends back its latest accepted value acc(33,2). B also
sends back its latest accepted value acc(22,3)

To +6.5: R sends a propose(22,4) (It took the newest value from the prepare phase). Both
clients B and C reply with an ack(22,4). All clients have accepted the same value. This
means we have achieved consensus.

prep(22, 1)

TO +0 >
/R<prep(33, 2 To + 0.5
acc(g, 0
prop(22, 1)
Tot1 >N
ack(22, 1)
TO +2 prep(22, 3)

P
/cc(¢, 0)
prop(33,2) . Ty + 2.5

ack(33,
22,3)

To+ 3 prop
o

prep(33,4) __ T, + 4.5

acc(22, 3)ecc(33,

prop(22,4 Ty + 6.5

ack(22, 4)(k(22

Q A B C R

Figure 1: The timeline of the two clients running the given paxos-proposer-program with different
timeout values

3 Paxos Acceptors

a) Figure 2 shows an example of how a byzantine client can lead to a failure of the Paxos
protocol (i.e. why Paxos is not resilient against byzatine failures):

ot

1. The red proposer sends a prepare with value 1.

2. The red acceptors (incl. the byzantine) send an ack(g,0) back.

3.

4. The blue acceptors (incl. the byzantine) send an ack(g,0) back. We assume that a

The blue proposer sends a prepare with its value.

read on the faulty register of the byzantine node returned 7,4, = 0.

The red proposer sends a propose with value 1.

6. The red acceptors (incl. the byzantine) send an ack(1,3) back. We assume that a read

on the faulty register of the byzantine node returned n,,,, = 3.

The blue proposer sends a propose with value 1.

8. The blue acceptors (incl. the byzantine) send an ack(2,4) back. We assume that a
read on the faulty register of the byzantine node returned 7,4, = 4.
At the end of these 8 steps the red proposer thinks that a majority has accepted the value

1 and the blue proposer thinks that a majority has accepted value 2. Both proposers will
start to disseminate their value as each of them thinks that they have achieved consensus.

— v - L -
[. \ 4 EJ N =
/ propose(1,3) / \ \

4/\\\%“ S & w\lg g

\ ED™ LA™ R (- \
\ = j= = N/ g :jv/ \51 o] = \ jou] /
N\ AN /7 A 7/
~ // \,\‘\‘// '\\ /_/' \\ //
I 6. - -
s \.y_/ h\\ o \\/'/. ¥\\
// 0 A jo \ //] A N
/ \ \ \ ; A \ \
. =) | | D=1 l
\ L_‘ Cl 5, \\ ! JEJ CJ &‘]// \ CJ C H\ ! EJ :_‘ ;J /
\ \E “acc(e,0) /\/ - , \ o “ack(1,3) \/\/ - y !
~ //' S »/./ N 7 N ‘/_/’
3. _/': T ~ _/'/ - ‘.\;\.\ 7. P -~ \'\v ,/././ - .
- ¥, g g v, =
// prepare(24) \ /_/ / E propose(2, 4) \
‘» “IRY IR N
(R \ / C / \ - A
N=R=R= V=N H\,, g9,
\ A s AN A, 7
~. s _\N’// ~. ‘/V/' ST
4. P -T~ N /,/" - N 8. ./‘: - T~ P N
g

J v, c

S /AN a{//
T L_]// [! LJ /

\\;JQ;J\\/ :LJ

N A acc(e,0) '/ '/_ ack(24)
7

_ ~. _ /'

~ N .
: ~

Figure 2: How a byzantine client can lead to different values that are accepted by a majority.

b) The prepare step allows the proposer and the acceptor to agree on a lower bound of the
proposal number that will be accepted. By sending an ack(x,y) message, the acceptor
guarantees the proposer that it will never accept a proposed value that has a smaller

timestamp than the one in the prepare message of the proposer.

