e
ETH s

Distributed ;’5‘»‘-

Eidgendssische Technische Hochschule Ziirich ““ I‘ u
Swiss Federal Institute of Technology Zurich Computing t}‘\ e B
HS 2010 M. Kuhn / S. Welten / Prof. R. Wattenhofer

1
a)

b)

d)

Distributed Systems Part 11

Solution to Exercise Sheet 7

Consistency Models

Sequential Consistency — Causal Consistency

In sequential consistency, all writes must be seen in the same order by all processes. In
causal consistency, causally related writes must be seen in the same order. As the causally
related writes form a subset of all writes, this requirement for causal consistency is certainly
fulfilled if the requirement for sequential consistency is fulfilled.

Causal Consistency < Linearizability

Linearizability implies sequential consistency, and thus — using the result from subtask a)
— also causal consistency. To see that linearizability implies sequential consistency, we can
look at the partial orders (real-time partial order <, vs. client partial order <.) that have
to be fulfilled by the two consistency models. As <, implies <. linearizability implies
sequential consistency.

Linearizability — Read-your-Writes Consistency
If an execution is linearizable, the total order on the data type agrees with the one on each
client. Thus, the own writes (or a newer value) will always be read.

Read-your-writes Consistency = Causal Consistency

To show that neither of the two consistency models implies the other, it is enough to show
two examples: One that is causally consistent, but not read-your-writes consistent, and
another one that is read-your-writes consistent, but not causally consistent. An execution
that is not read-your-writes consistent (but causally consistent) is shown below:

write(u:=1) —

read(u)
[>
(]

An execution that is read-your-writes consistent, but not causally consistent is given below.
The two write operations are causally related. Client A sees them in the order w(u :=1) <

w(u

:= 2) whereas client B sees them in the order w(u := 2) < w(u :=1). Thus, the two

clients see the (causally related) writes in different order, which contradicts the definition
of causal consistency.

write(u:=1) 0

write(u:=2) [

} read(u)
2
read(u)
read(u) }
= 1
2

2 Library

a)

b)

Linearizability: The “execution” is not linearizable because the first read operation
does not read the value of the write operation that was executed directly before it.
There is no linearization that leads to the same results of the read operations.

Sequential consistency: The “execution” is not sequentially consistent because the
client partial order requires w(0) < w(l) < r(0)) and 7(0) requires that no write
operation occurs between w(0) and 7(0) (because it reads the value writte by w(0)).

Monotonic Read Consistency: The “execution” is monotonic read consistent be-
cause the second read operation reads a value that was written later than the value
read by the first read operation.

Read-your-Writes-Consistency: The “execution” is not read-your-writes consis-
tent because r(0) that is executed directly after w(1) does not read the value written
by w(1).

Causal consistency: The “execution” is causally consistent (see subtask c).

Linearizability: The “execution” could be linearizable if for example someone had
borrowed the book after she gave it back and before she rechecked the index (see
Figure 1).

Sequential consistency: The “execution” could be sequentially consistent because
the system could be linearizable (and linearizable implies sequential consistency)

Monotonic Read Consistency: The “execution” could be monotonic read consis-
tent because the system could be linearizable (and linearizable implies monotonic read
consistency)

Read-your-Writes-Consistency: The “execution” could be not read-your-writes
consistent because the system could be linearizable (and linearizable implies read
your writes consistency)

Causal comnsistency: The “execution” could be causally consistent because the sys-
tem could be linearizable (and linearizable implies causal consistency)

write(0) —

write(l) 7=——

read() { _
read() D
1

Figure 1: A linearizable library “execution” when other people (A) might have been in the library
at the same time as Barbara.

c) Figure 2 shows the library “execution” (red) with the causal dependencies (blue), according
to the definition of causal dependency in slide 18 in part 3 of chapter 7. Note that the blue
dotted line on the right indicates a dependency that is induced by the transitive closure of
the definition.

write(0) Barbara borrows the book from the library.
write(1) Barbara takes the book back.

read = 0 Barbara checks the index.

read = 1 Barbara checks the index again.

write(0) —

Figure 2: The library “execution” with causal dependencies.

