
Computer Engineering and
Networks Laboratory

HS 2011 Dr. K. Lampka / T. Langner, J. Seidel, J. Smula

Discrete Event Systems
Solution to Exercise Sheet 10

1 Labelled Graphs

a) We give two algorithms, an iterative and a recursive one, that calculate whether the given
LTS L accepts the word ω = w1 . . . wn.

Algorithm 1 AcceptIterative(L, ω)

Input: LTS L = (S,S0,Act ,E), ω = w1w2 . . . wn

states ← S0 . contains the states reachable by w1 . . . wi−1

for i← 1 to n do
newStates← ∅ . contains the new states reachable by w1 . . . wi

for all v ∈ states do . For all current states. . .
for all c ∈ PostSetNodes(v) do . For all reachable states. . .

if Act((v, c)) = wi then . If the label matches. . .
newStates← newStates ∪ {e.target()} remember the state

if newStates = ∅ then . If no edge with label wi exists. . .
return false

states← newStates
return true

Algorithm 2 AcceptRecursive(L, states, ω)

Input: LTS L = (S,S0,Act ,E), states: set of states, ω = w1w2 . . . wn

newStates← ∅
if ω = ∅ then . Every letter of the word has been matched to a path.

return true
else if states = ∅ then . No state was reachable by the last letter.

return false
for all v ∈ states do . For all current states. . .

for all c ∈ PostSetNodes(v) do . For all reachable states. . .
if Act((v, c)) = w1 then . If the label matches. . .

newStates← newStates ∪ {c} remember the state

ω ← w2, . . . , wn . Remove first letter of ω
return AcceptRecursive(L,newStates, ω) . Recursive call for the remaining word

The initial call is AcceptRecursive(L,S0, ω).

2 Structural Properties of Petri Nets and Token Game

a) The pre and post sets of a transition are defined as follows:

• pre set: •t := {p | (p, t) ∈ C}
• post set: t• := {p | (t, p) ∈ C},

the pre and post sets of a place are defined analogously.

For the petri net N1 we obtain the following sets:

•t5 = {p5, p9}, t5• = {p6}
•t8 = {p8}, t8• = {p10, p5}
•p3 = {t2}, p3• = {t3}

b) A transition is enabled if all places in its pre set contain enough tokens. In the case of N1,
which has only unweighted edges, one token per place suffices. When t2 fires, it consumes
one token out of each place in the pre set of t2 and produces one token on each place in
the post set of t2. Hence, the firing of t2 produces one token on place p3 and p9 each, the
one on p2 is consumed. After this, t5 is enabled because both p9 and p5 hold one token.
However, t3 is not enabled because p3 contains a token but p10 does not.

c) Before t2 fires there are two tokens in N1, one on p2 and p5 each. Directly afterwards,
there are tokens on places p3, p9 und p5.

d) A token traverses the upper cycle until t2 fires. Then one token remains on p3 and waits,
and another one is produced in p9, which enables transition t5. When t5 consumes the
tokens on p9 and p5 and produces a token on p6, this one can traverse the lower cycle until
t8 is enabled. One token now remains on p5 and waits, another one enables t3, because
there is still one token on p3. Now one token traverses the upper cycle again until t2 is
enabled, and so on.

Hence, this petri net models two processes which always appear alternately.

The reachability graph RG(P,~s0) of a petri net P is a quadruple (S,S0, Act,E) such that

• S is the set of reachable states of P starting from ~s0

• S0 := {~s0} is the start state of P

• Act is the set of transition labels

• E ⊆ S×Act× S is the set of edges such that E = {
(
~s, t, δ(~s, t)

)
| ~s ∈ S∧ t ∈ T ∧ ~s . t}

Usually the states of the petri net are denoted by vectors such that the i-th position in the
vector indicates the number of tokens on place pi of the petri net. So, for example, the
starting state ~s0 of N1, in which the places p1 and p5 hold one token each, is denoted by

2

~s0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0). Hence, the reachability graph looks as follows:

S = { (1, 0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 1, 0),

(0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 1, 0, 1, 0, 0, 0, 0, 1), (0, 0, 0, 1, 1, 0, 0, 0, 0, 0) },

S0 = { (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) },

Act = { t1, t2, t3, t4, t5, t6, t7, t8, t9, t10 },

E = {
(
(1, 0, 0, 0, 1, 0, 0, 0, 0, 0), t1, (0, 1, 0, 0, 1, 0, 0, 0, 0, 0)

)
,(

(0, 1, 0, 0, 1, 0, 0, 0, 0, 0), t2, (0, 0, 1, 0, 1, 0, 0, 0, 1, 0)
)
,(

(0, 0, 1, 0, 1, 0, 0, 0, 1, 0), t5, (0, 0, 1, 0, 0, 1, 0, 0, 0, 0)
)
,(

(0, 0, 1, 0, 0, 1, 0, 0, 0, 0), t6, (0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
)
,(

(0, 0, 1, 0, 0, 0, 1, 0, 0, 0), t7, (0, 0, 1, 0, 0, 0, 0, 1, 0, 0)
)
,(

(0, 0, 1, 0, 0, 0, 0, 1, 0, 0), t8, (0, 0, 1, 0, 1, 0, 0, 0, 0, 1)
)
,(

(0, 0, 1, 0, 1, 0, 0, 0, 0, 1), t3, (0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
)
,(

(0, 0, 0, 1, 1, 0, 0, 0, 0, 0), t4, (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)
)
}.

For better legibility we denote the states in such a way that the index contains the places
that hold a token in this state, for example ~s0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) = s1,5.

Then the reachability graph can also be specified as follows:

s1,5 s2,5 s3,5,9 s3,6 s3,7 s3,8 s3,5,10 s4,5
t1 t2 t5 t6 t7 t8 t3

t4

3 Basic Properties of Petri Nets

A petri net is k-bounded, if there is no fire sequence that makes the number of tokens in one
place grow larger than k. It is obvious that petri net N2 is 1-bounded if k ≤ 1. This holds
because in the initial state there is only one token in the net, and in the case k ≤ 1 no transition
increases the number of tokens in N2. If k ≥ 2, the number of tokens in p1 can grow infinitely
large by repeatedly firing t1, t3 and t4. So, the petri net N2 is unbounded for k ≥ 2.

A petri net is deadlock free if no fire sequence leads to a state in which no transition is
enabled. If k = 0, N2 is not deadlock-free. The fire sequence t1, t3, t4 causes the only existing
token to be consumed and hence, there is no enabled transition any more. For k ≥ 1, however,
no deadlock can occur.

4 Reachability Analysis for Petri Nets

a) Petri nets may possess infinite reachability graphs, e.g. N2 with k ≥ 2. If the state in
question is actually reachable in such a petri net, the reachability algorithm will eventually
terminate. If it is not reachable, the algorithm will never be able to determine this with
absolute certainty (cf. halting problem).

b) We determine the incidence matrix of the petri net as explained in the lecture.

A =

−1 1 0 2
1 −1 −1 0
0 0 1 −1

3

We are interested in whether the state ~s = (101, 99, 4) is reachable from the initial state

~s0 = (1, 0, 0). If the equation system A · ~f = ~s− ~s0 has no solution, we know that the state
~s is not reachable from s0. “Unfortunately”,

−1 1 0 2
1 −1 −1 0
0 0 1 −1

 ·

f1
f2
f3
f4

 =

100
99
4

is satisfiable. To show that ~s is reachable from ~s0, we have to give a firing sequence through
which we get from ~s0 to ~s. From the last equation of the above equation system, we know
that f3 = f4 + 4. Hence, in the desired firing sequence, f3 is fired four times more than
f4. However, ~f does not tell us about the firing order. Considering the petri net, we can
see that – starting from ~s0 – the number of tokens in p1 increases by one after firing t1, t3,
and t4 in this order. Repeating this for 203 times yields the state (204, 0, 0). Firing t1 for
103 times followed by firing t3 for four times finally yields state ~s.

5 Mutual Exclusion

For each process we introduce two places (p1, p2, p3 und p4) representing the process within the
normal program execution (p1, p2) as well as in the critical section (p3, p4). For each process,
we have a token indicating which section of the program currently is executed. Additionally, we
introduce a place p0 representing the mutex variable. If the mutex variable is 0, then we have a
token at p0. We have to make sure that a process can only enter its critical section if there is a
token at the mutex place. The resulting petri net looks as follows.

p0

p1

t1

t3

p3

p2

t2

t4

p4

Assume that initially, both processes are in an uncritical section (in the petri net, this is denoted
by a token in place p1 and p2 respectively). A process can only enter its critical section (p3/p4)
if there is a token at p0. In this case, the token is consumed when entering the critical section.
A new mutex token at p0 is not created until the process leaves its critical section. Hence, both
processes exclude each other mutually from the concurrent access to the critical section.

4

