

 $\mathrm{HS}\ 2011$

Dr. K. Lampka / T. Langner, J. Seidel, J. Smula

Discrete Event Systems Solution to Exercise Sheet 10

1 Labelled Graphs

a) We give two algorithms, an iterative and a recursive one, that calculate whether the given LTS \mathcal{L} accepts the word $\omega = w_1 \dots w_n$.

Algorithm 1 AcceptIterative (\mathcal{L}, ω)	
Input: LTS $\mathcal{L} = (\mathbb{S}, \mathbb{S}_0, Act, \mathbb{E}), \omega = w_1 w_2$	$\dots w_n$
states $\leftarrow \mathbb{S}_0$	\triangleright contains the states reachable by $w_1 \dots w_{i-1}$
for $i \leftarrow 1$ to n do	
$newStates \leftarrow \emptyset$	\triangleright contains the new states reachable by $w_1 \dots w_i$
for all $v \in$ states do	\triangleright For all current states
for all $c \in \text{PostSetNodes}(v)$ do	\triangleright For all reachable states
if $Act((v,c)) = w_i$ then	\triangleright If the label matches
newStates \leftarrow newStates \cup { e .	$target()$ $\triangleright \dots$ remember the state
if newStates = \emptyset then	\triangleright If no edge with label w_i exists
return false	-
states \leftarrow newStates	
return true	

Algorithm 2 ACCEPTRECURSIVE(\mathcal{L} , states, ω)

Input: LTS $\mathcal{L} = (\mathbb{S}, \mathbb{S}_0, Act, \mathbb{E})$, states: set of states, $\omega = w_1 w_2 \dots w_n$	
newStates $\leftarrow \emptyset$	
$\mathbf{if} \ \omega = \emptyset \ \mathbf{then} \qquad \qquad \triangleright \mathbf{l}$	Every letter of the word has been matched to a path.
return true	
else if states = \emptyset then	\triangleright No state was reachable by the last letter.
return false	
for all $v \in$ states do	\triangleright For all current states
for all $c \in \text{PostSetNodes}(v)$ do	\triangleright For all reachable states
if $Act((v,c)) = w_1$ then	\triangleright If the label matches
$\text{newStates} \leftarrow \text{newStates} \cup \{c\}$	$\triangleright \dots$ remember the state
$\omega \leftarrow w_2, \ldots, w_n$	\triangleright Remove first letter of ω
return ACCEPTRECURSIVE(\mathcal{L} , newState	(s, ω) \triangleright Recursive call for the remaining word

The initial call is ACCEPTRECURSIVE($\mathcal{L}, \mathbb{S}_0, \omega$).

2 Structural Properties of Petri Nets and Token Game

- a) The pre and post sets of a transition are defined as follows:
 - pre set: • $t := \{p \mid (p, t) \in C\}$
 - post set: $t \bullet := \{ p \mid (t, p) \in C \},\$

the pre and post sets of a place are defined analogously.

For the petri net N_1 we obtain the following sets:

$$\begin{aligned} \bullet t_5 &= \{p_5, p_9\}, & t_5 \bullet &= \{p_6\} \\ \bullet t_8 &= \{p_8\}, & t_8 \bullet &= \{p_{10}, p_5\} \\ \bullet p_3 &= \{t_2\}, & p_3 \bullet &= \{t_3\} \end{aligned}$$

- b) A transition is enabled if all places in its pre set contain enough tokens. In the case of N_1 , which has only unweighted edges, one token per place suffices. When t_2 fires, it consumes one token out of each place in the pre set of t_2 and produces one token on each place in the post set of t_2 . Hence, the firing of t_2 produces one token on place p_3 and p_9 each, the one on p_2 is consumed. After this, t_5 is enabled because both p_9 and p_5 hold one token. However, t_3 is not enabled because p_3 contains a token but p_{10} does not.
- c) Before t_2 fires there are two tokens in N_1 , one on p_2 and p_5 each. Directly afterwards, there are tokens on places p_3 , p_9 und p_5 .
- d) A token traverses the upper cycle until t_2 fires. Then one token remains on p_3 and waits, and another one is produced in p_9 , which enables transition t_5 . When t_5 consumes the tokens on p_9 and p_5 and produces a token on p_6 , this one can traverse the lower cycle until t_8 is enabled. One token now remains on p_5 and waits, another one enables t_3 , because there is still one token on p_3 . Now one token traverses the upper cycle again until t_2 is enabled, and so on.

Hence, this petri net models two processes which always appear alternately.

The reachability graph $RG(P, \vec{s}_0)$ of a petri net P is a quadruple $(\mathbb{S}, \mathbb{S}_0, Act, \mathbb{E})$ such that

- S is the set of reachable states of P starting from \vec{s}_0
- $\mathbb{S}_0 := \{\vec{s}_0\}$ is the start state of P
- Act is the set of transition labels
- $\mathbb{E} \subseteq \mathbb{S} \times Act \times \mathbb{S}$ is the set of edges such that $\mathbb{E} = \{ (\vec{s}, t, \delta(\vec{s}, t)) \mid \vec{s} \in \mathbb{S} \land t \in T \land \vec{s} \triangleright t \}$

Usually the states of the petri net are denoted by vectors such that the *i*-th position in the vector indicates the number of tokens on place p_i of the petri net. So, for example, the starting state \vec{s}_0 of N_1 , in which the places p_1 and p_5 hold one token each, is denoted by

 $\vec{s}_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)$. Hence, the reachability graph looks as follows:

$$\begin{split} \mathbb{S} &= \{ \begin{array}{ccc} (1,0,0,0,1,0,0,0,0,0), (0,1,0,0,1,0,0,0,0,0), (0,0,1,0,1,0,0,0,1,0), \\ (0,0,1,0,0,1,0,0,0,0), (0,0,1,0,0,0,1,0,0,0), (0,0,1,0,0,0,0,1,0,0), \\ (0,0,1,0,1,0,0,0,0,1), (0,0,0,1,1,0,0,0,0,0) \end{array} \}, \end{split}$$

$$\mathbb{S}_0 = \{ (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) \},\$$

$$Act = \{ t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10} \}$$

$$\begin{split} \mathbb{E} &= \{ \begin{array}{l} \left((1,0,0,0,1,0,0,0,0,0),t_1,(0,1,0,0,1,0,0,0,0,0)) \right), \\ \left((0,1,0,0,1,0,0,0,0,0),t_2,(0,0,1,0,1,0,0,0,1,0) \right), \\ \left((0,0,1,0,1,0,0,0,0,1,0),t_5,(0,0,1,0,0,1,0,0,0,0) \right), \\ \left((0,0,1,0,0,1,0,0,0,0),t_6,(0,0,1,0,0,0,1,0,0,0) \right), \\ \left((0,0,1,0,0,0,1,0,0,0),t_7,(0,0,1,0,0,0,0,1,0,0) \right), \\ \left((0,0,1,0,0,0,0,1,0,0),t_8,(0,0,1,0,1,0,0,0,0,1) \right), \\ \left((0,0,1,0,1,0,0,0,0,1),t_3,(0,0,0,1,1,0,0,0,0,0) \right), \\ \left((0,0,0,1,1,0,0,0,0,0),t_4,(1,0,0,0,1,0,0,0,0,0) \right), \\ \end{array} \end{split}$$

For better legibility we denote the states in such a way that the index contains the places that hold a token in this state, for example $\vec{s}_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) = s_{1,5}$. Then the reachability graph can also be specified as follows:

3 Basic Properties of Petri Nets

A petri net is k-bounded, if there is no fire sequence that makes the number of tokens in one place grow larger than k. It is obvious that petri net N_2 is 1-bounded if $k \leq 1$. This holds because in the initial state there is only one token in the net, and in the case $k \leq 1$ no transition increases the number of tokens in N_2 . If $k \geq 2$, the number of tokens in p_1 can grow infinitely large by repeatedly firing t_1 , t_3 and t_4 . So, the petri net N_2 is unbounded for $k \geq 2$.

A petri net is deadlock free if no fire sequence leads to a state in which no transition is enabled. If k = 0, N_2 is not deadlock-free. The fire sequence t_1, t_3, t_4 causes the only existing token to be consumed and hence, there is no enabled transition any more. For $k \ge 1$, however, no deadlock can occur.

4 Reachability Analysis for Petri Nets

- a) Petri nets may possess infinite reachability graphs, e.g. N_2 with $k \ge 2$. If the state in question is actually reachable in such a petri net, the reachability algorithm will eventually terminate. If it is not reachable, the algorithm will never be able to determine this with absolute certainty (cf. halting problem).
- b) We determine the incidence matrix of the petri net as explained in the lecture.

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 & 2\\ 1 & -1 & -1 & 0\\ 0 & 0 & 1 & -1 \end{pmatrix}$$

We are interested in whether the state $\vec{s} = (101, 99, 4)$ is reachable from the initial state $\vec{s_0} = (1, 0, 0)$. If the equation system $\mathbf{A} \cdot \vec{f} = \vec{s} - \vec{s_0}$ has no solution, we know that the state \vec{s} is not reachable from s_0 . "Unfortunately",

$$\begin{pmatrix} -1 & 1 & 0 & 2\\ 1 & -1 & -1 & 0\\ 0 & 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} f_1\\ f_2\\ f_3\\ f_4 \end{pmatrix} = \begin{pmatrix} 100\\ 99\\ 4 \end{pmatrix}$$

is satisfiable. To show that \vec{s} is reachable from $\vec{s_0}$, we have to give a firing sequence through which we get from $\vec{s_0}$ to \vec{s} . From the last equation of the above equation system, we know that $f_3 = f_4 + 4$. Hence, in the desired firing sequence, f_3 is fired four times more than f_4 . However, \vec{f} does not tell us about the firing order. Considering the petri net, we can see that – starting from $\vec{s_0}$ – the number of tokens in p_1 increases by one after firing t_1, t_3 , and t_4 in this order. Repeating this for 203 times yields the state (204, 0, 0). Firing t_1 for 103 times followed by firing t_3 for four times finally yields state \vec{s} .

5 Mutual Exclusion

For each process we introduce two places $(p_1, p_2, p_3 \text{ und } p_4)$ representing the process within the normal program execution (p_1, p_2) as well as in the critical section (p_3, p_4) . For each process, we have a token indicating which section of the program currently is executed. Additionally, we introduce a place p_0 representing the mutex variable. If the mutex variable is 0, then we have a token at p_0 . We have to make sure that a process can only enter its critical section if there is a token at the mutex place. The resulting petri net looks as follows.

Assume that initially, both processes are in an uncritical section (in the petri net, this is denoted by a token in place p_1 and p_2 respectively). A process can only enter its critical section (p_3/p_4) if there is a token at p_0 . In this case, the token is consumed when entering the critical section. A new mutex token at p_0 is not created until the process leaves its critical section. Hence, both processes exclude each other mutually from the concurrent access to the critical section.