Discrete Event Systems
Solution to Exercise Sheet 10

1 Labelled Graphs

a) We give two algorithms, an iterative and a recursive one, that calculate whether the given LTS L accepts the word $\omega = w_1 \ldots w_n$.

Algorithm 1 AcceptIterative(L, ω)

Input: LTS $L = (S, S_0, Act, E)$, $\omega = w_1w_2 \ldots w_n$

- $\text{states} \leftarrow S_0$ ⊳ contains the states reachable by $w_1 \ldots w_{i-1}$
- for $i \leftarrow 1$ to n do
 - $\text{newStates} \leftarrow \emptyset$ ⊳ contains the new states reachable by $w_1 \ldots w_i$
 - for all $v \in \text{states}$ do
 - for all $c \in \text{PostSetNodes}(v)$ do
 - if $\text{Act}((v, c)) = w_i$ then
 - $\text{newStates} \leftarrow \text{newStates} \cup \{c.\text{target}()\}$ ⊳ If the label matches...
 - if $\text{newStates} = \emptyset$ then
 - return false ⊳ If no edge with label w_i exists...
- $\text{states} \leftarrow \text{newStates}$
- return true

Algorithm 2 AcceptRecursive(L, states, ω)

Input: LTS $L = (S, S_0, Act, E)$, states: set of states, $\omega = w_1w_2 \ldots w_n$

- $\text{newStates} \leftarrow \emptyset$
- if $\omega = \emptyset$ then ⊳ Every letter of the word has been matched to a path.
 - return true
- else if states = \emptyset then ⊳ No state was reachable by the last letter.
 - return false
- for all $v \in \text{states}$ do ⊳ For all current states...
 - for all $c \in \text{PostSetNodes}(v)$ do
 - if $\text{Act}((v, c)) = w_1$ then
 - $\text{newStates} \leftarrow \text{newStates} \cup \{c\}$ ⊳ If the label matches...
 - $\omega \leftarrow w_2, \ldots, w_n$ ⊳ Remove first letter of ω
 - return AcceptRecursive(L, newStates, ω) ⊳ Recursive call for the remaining word

The initial call is AcceptRecursive(L, S_0, ω).
2 Structural Properties of Petri Nets and Token Game

a) The pre and post sets of a transition are defined as follows:
 - pre set: \(\bullet t := \{ p \mid (p, t) \in C \} \)
 - post set: \(t\bullet := \{ p \mid (t, p) \in C \} \),

the pre and post sets of a place are defined analogously.

For the petri net \(N_1 \) we obtain the following sets:

- \(t_5 = \{ p_5, p_9 \} \), \(t_5\bullet = \{ p_6 \} \)
- \(t_8 = \{ p_8 \} \), \(t_8\bullet = \{ p_{10}, p_5 \} \)
- \(p_3 = \{ t_2 \} \), \(p_3\bullet = \{ t_3 \} \)

b) A transition is enabled if all places in its pre set contain enough tokens. In the case of \(N_1 \), which has only unweighted edges, one token per place suffices. When \(t_2 \) fires, it consumes one token out of each place in the pre set of \(t_2 \) and produces one token on each place in the post set of \(t_2 \). Hence, the firing of \(t_2 \) produces one token on place \(p_3 \) and \(p_9 \) each, the one on \(p_2 \) is consumed. After this, \(t_5 \) is enabled because both \(p_9 \) and \(p_5 \) hold one token. However, \(t_3 \) is not enabled because \(p_3 \) contains a token but \(p_{10} \) does not.

c) Before \(t_2 \) fires there are two tokens in \(N_1 \), one on \(p_2 \) and \(p_5 \) each. Directly afterwards, there are tokens on places \(p_3 \), \(p_9 \) und \(p_5 \).

d) A token traverses the upper cycle until \(t_2 \) fires. Then one token remains on \(p_3 \) and waits, and another one is produced in \(p_9 \), which enables transition \(t_5 \). When \(t_5 \) consumes the tokens on \(p_9 \) and \(p_5 \) and produces a token on \(p_6 \), this one can traverse the lower cycle until \(t_8 \) is enabled. One token now remains on \(p_5 \) and waits, another one enables \(t_3 \), because there is still one token on \(p_3 \). Now one token traverses the upper cycle again until \(t_2 \) is enabled, and so on.

Hence, this petri net models two processes which always appear alternately.

The reachability graph \(RG(P, \vec{s}_0) \) of a petri net \(P \) is a quadruple \((S, S_0, Act, E)\) such that

- \(S \) is the set of reachable states of \(P \) starting from \(\vec{s}_0 \)
- \(S_0 := \{ \vec{s}_0 \} \) is the start state of \(P \)
- \(Act \) is the set of transition labels
- \(E \subseteq S \times Act \times S \) is the set of edges such that \(E = \{ (\vec{s}, t, \delta(\vec{s}, t)) \mid \vec{s} \in S \land t \in T \land \vec{s} \triangleright t \} \)

Usually the states of the petri net are denoted by vectors such that the \(i \)-th position in the vector indicates the number of tokens on place \(p_i \) of the petri net. So, for example, the starting state \(\vec{s}_0 \) of \(N_1 \), in which the places \(p_1 \) and \(p_5 \) hold one token each, is denoted by
\(s_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)\). Hence, the reachability graph looks as follows:

\[
S = \{(1, 0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1, 0, 0, 0)\}
\]

\(S_0 = \{(1, 0, 0, 0, 1, 0, 0, 0, 0, 0)\}\),

\(Act = \{t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10}\}\),

\(E = \{(1, 0, 0, 0, 1, 0, 0, 0, 0, 0), t_1, (0, 1, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 1, 0, 0), t_2, (0, 0, 1, 0, 1, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0), t_5, (0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0), t_6, (0, 0, 1, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 0, 1, 0, 0, 0), t_7, (0, 0, 1, 0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 1, 0, 0, 0), t_8, (0, 0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0), t_3, (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0), t_4, (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)\}\).

For better legibility we denote the states in such a way that the index contains the places that hold a token in this state, for example \(\tilde{s}_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) = s_{1,5}\).

Then the reachability graph can also be specified as follows:

3 Basic Properties of Petri Nets

A petri net is \(k\)-bounded, if there is no fire sequence that makes the number of tokens in one place grow larger than \(k\). It is obvious that petri net \(N_2\) is \(1\)-bounded if \(k \leq 1\). This holds because in the initial state there is only one token in the net, and in the case \(k \leq 1\) no transition increases the number of tokens in \(N_2\). If \(k \geq 2\), the number of tokens in \(p_1\) can grow infinitely large by repeatedly firing \(t_1, t_3\) and \(t_4\). So, the petri net \(N_2\) is unbounded for \(k \geq 2\).

A petri net is deadlock free if no fire sequence leads to a state in which no transition is enabled. If \(k = 0\), \(N_2\) is not deadlock-free. The fire sequence \(t_1, t_3, t_4\) causes the only existing token to be consumed and hence, there is no enabled transition any more. For \(k \geq 1\), however, no deadlock can occur.

4 Reachability Analysis for Petri Nets

a) Petri nets may possess infinite reachability graphs, e.g. \(N_2\) with \(k \geq 2\). If the state in question is actually reachable in such a petri net, the reachability algorithm will eventually terminate. If it is not reachable, the algorithm will never be able to determine this with absolute certainty (cf. halting problem).

b) We determine the incidence matrix of the petri net as explained in the lecture.

\[
A = \begin{pmatrix}
-1 & 1 & 0 & 0 \\
1 & -1 & -1 & 0 \\
0 & 1 & -1 & 1
\end{pmatrix}
\]
We are interested in whether the state $\bar{s} = (101, 99, 4)$ is reachable from the initial state $\bar{s}_0 = (1, 0, 0)$. If the equation system $A \cdot \bar{f} = \bar{s} - \bar{s}_0$ has no solution, we know that the state \bar{s} is not reachable from \bar{s}_0. “Unfortunately”,

$$\begin{pmatrix}
-1 & 1 & 0 & 2 \\
1 & -1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix} \cdot \begin{pmatrix}
 f_1 \\
f_2 \\
f_3 \\
f_4
\end{pmatrix} = \begin{pmatrix}
100 \\
99 \\
4
\end{pmatrix}$$

is satisfiable. To show that \bar{s} is reachable from \bar{s}_0, we have to give a firing sequence through which we get from \bar{s}_0 to \bar{s}. From the last equation of the above equation system, we know that $f_3 = f_4 + 4$. Hence, in the desired firing sequence, f_3 is fired four times more than f_4. However, \bar{f} does not tell us about the firing order. Considering the petri net, we can see that – starting from \bar{s}_0 – the number of tokens in p_1 increases by one after firing t_1, t_3, and t_4 in this order. Repeating this for 203 times yields the state $(204, 0, 0)$. Firing t_1 for 103 times followed by firing t_4 for four times finally yields state \bar{s}.

5 Mutual Exclusion

For each process we introduce two places (p_1, p_2, p_3 und p_4) representing the process within the normal program execution (p_1, p_2) as well as in the critical section (p_3, p_4). For each process, we have a token indicating which section of the program currently is executed. Additionally, we introduce a place p_0 representing the mutex variable. If the mutex variable is 0, then we have a token at p_0. We have to make sure that a process can only enter its critical section if there is a token at the mutex place. The resulting petri net looks as follows.

Assume that initially, both processes are in an uncritical section (in the petri net, this is denoted by a token in place p_1 and p_2 respectively). A process can only enter its critical section (p_3/p_4) if there is a token at p_0. In this case, the token is consumed when entering the critical section. A new mutex token at p_0 is not created until the process leaves its critical section. Hence, both processes exclude each other mutually from the concurrent access to the critical section.