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Alan Mathison Turing 

• 1912 – 1954, British mathematician 

• one of the fathers of computer 
science 

• his computer model –  
the Turing Machine – was 
inspiration/premonition of the 
electronic computer that came two 
decades later 

• during World War II he worked on 
breaking German cyphers, 
particularly the Enigma machine.  

• Invented the “Turing Test” used in 
Artificial Intelligence 

• Legacy: The Turing Award.  
“Nobel prize” in computer science 
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Alan Turing’s Academic Career 

• 1931: King's College, University of 
Cambridge, England 

– Profs: Newman, Russell, Wittgenstein 

– Interests 
– group theory 

– probability theory 

– formal logic 

– Thesis: proof of a main theorem in 
statistics 

• 1935: Fellow of King's College 
– interests: Entscheidungsproblem 

• 1936: PhD student in Princeton 
– student of Alonzo Church 

– equivalence of Turing machines and λ-
Calculus 

• 1945: National Physical Laboratory 
– works on the design of the automatic 

computing engine (stored-program 
computer) 

• 1948: Manchester University 

– joined Max Newman’s Computing 
Laboratory 

– worked on software for Mark 1 

– addressed the problem of artificial 
intelligence (Turing Test) 

– became interested in 
mathematical biology 
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Inference and Inductive Reasoning (Greek Philosophers) 

• Inference or deduction is the act or process of deriving logical conclusions 
from premises known or assumed to be true. 

• The process by which a conclusion is inferred from multiple observations 
is called inductive reasoning.  

• The conclusion may be correct or incorrect, or correct to within a certain 
degree of accuracy, or correct in certain situations. Conclusions inferred 
from multiple observations may be tested by additional observations. 

 

• Inference Example 

1. All men are mortal. [inductive reasoning] 

2. Socrates is a man. 

3. Therefore, Socrates is mortal. 

 

• Big question: Can this process be automated? 

– The laws of valid inference are studied in the field of logic. 

– Are there other beings than men, which can draw logical  
conclusions?   
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Formalization of Propositional Logic (19th Century) 

• Augustus De Morgan (1806 – 1871) 

– British mathematician and logician (Trinity College) 

– “First Notions of Logic” (1840), De Morgan's laws 

– “Formal Logic or The Calculus of Inference” (1847) 

• George Boole (1815 – 1864)  

– English mathematician, philosopher and logician 

– “The Mathematical Analysis of Logic” (1847) 

– “An Investigation of The Laws of Thought” (1854) 

– algebraic system of logic  Boolean algebra 

 

• Propositional Logic  
(Propositional Calculus, Sentential Calculus) 

– Examples 

– proposition P: “it rains for an hour” 

– proposition Q: “the ground is wet” 

– satisfiable formula F = P → Q ≡ ¬P ⋁ Q 

– valid formula          G = ¬F ⋁ F 
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Propositional Logic: Formal Definition and Syntax 

• Definition:  A propositional logic is a formal system  
P = (A, W, Z, I).  

–  A is a finite set of proposition variables (atoms), e.g. P, Q, … 

–  W is a finite set of operator symbols, e.g. {⊥, ⊤, ¬, ⋁, ⋀, →, ↔}. 

–  Z is a finite set of transformation (inference) rules, e.g. De Morgan’s laws. 

–  I is a finite set of starting points, e.g. the logical formulas that are assumed to 
be true without controversy (= axioms). Can be empty. 

 

• Syntax: The language L of P is the set of formulas. It is inductively defined 
by the following rules: 

– base case: any element of A is a formula of L.  

– inductive case: if Pi are formulas and w ∈ W, then w(P1, P2, …, Pk) is a formula 
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Propositional Logic: Semantic 

• Semantic: A truth assignment is a function f: A  {false, true}. 

– f satisfies P ∈ A if and only if f(P) = true 

– for each w ∈ W the semantic defines under what conditions a w-transformed 
formula is satisfiable by f, e.g. 

– ⊥ is never satisfied, ⊤ is always satisfied 

– ¬F is satisfied if and only if F is not satisfied 

– (F ⋁ G) is satisfied if and only if at least one of either F or G are satisfied 

– (F ⋀ G) is satisfied if and only if both F and G are satisfied 

– (F → G) is satisfied if and only if it is not the case that F is satisfied but not G 

 

• Semantic inference 

– a set of formulas S semantically implies a formula G if all truth assignments f 
that satisfy all the formulas in S also satisfy G 

• Syntactic inference 

– a set of formulas S syntactically implies a formula G if and only if we can derive 
G from S with the inference rules Z in a finite number of steps 
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Propositional Logic: Soundness and Completeness 

• Soundness (Consistency) 

– if the set of formulas S syntactically implies the 
formula G, then S semantically implies G  

– semantic inference is a necessary condition for 
syntactic inference 

 

 

 

• Completeness 

– if the set of formulas S semantically implies the 
formula G, then S syntactically implies G  

– semantic inference is a sufficient condition for 
syntactic inference 
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Formalization of Second-order Logic (19th Century) 

• Gottlob Frege (1848 – 1925) 

– German mathematician, logician and philosopher (Jena, 
Göttingen) 

– wanted to show that mathematics grows out of logic 

– rigorous treatment of the ideas of functions and quantified 
variables and sets 

– “Begriffsschrift. Eine der arithmetischen nachgebildete 
Formelsprache des reinen Denkens.” (1879) 

– “Grundgesetze der Arithmetik”, Band 2 (1903) 
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First-order logic is an extension of 
propositional logic 
• new elements: quantified variables, 

functions, predicates, relations 
• Example 

predicate P(a): “a is a philosopher” 
predicate S(a): “a is a scholar” 
formula F = a: P(a) → S(a) 
formula G = ¬∃a: P(a) ⋀ ¬S(a) 

Second-order logic is an extension 
of first-order logic 
• new elements: variables that range 

over sets of individuals 
• Example 

set P ⊂ Domain 
formula F = P x: x∈P ⋁ x∉P  



Peano Axioms for Natural Numbers (1889) 

• Giuseppe Peano (1858 – 1932) 

– Italian mathematician (University of Turin) 

• Peano Axioms: set of axioms for the natural numbers 

– 1st: asserts the existence of at least one member of ℕ 

– 2nd to 5th: general statements about equality 

– 6th to 8th: first-order statements about ℕ expressing the 
fundamental properties of the successor operation 

– 9th: second-order statement of the principle of mathematical 
induction over ℕ 

 

• Peano Arithmetic (in combination with the first eight axioms) 

– Addition 

a: a + 0 = a 

ab: a + S(b) = S(a + b) 

– Multiplication 

a: a · 0 = 0 

ab: a · S(b) = a + (a · b) 
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Mathematical Induction: Example 

• 1st axiom: 0 ∈ ℕ 

• 2nd axiom: x ∈ ℕ: (x = x) 

• 6th axiom: x ∈ ℕ: S(x) ∈ ℕ 

– unary representation of ℕ = { 0, S(0), S(S(0)), S(S(S(0))), … } 

• 7th axiom: x ∈ ℕ: ¬(S(x) = 0) 

• 8th axiom: x ∈ ℕ y ∈ ℕ : (S(x) = S(y)) → (x = y) 

• 9th axiom 

– let P be a unary predicate 

– ( P(0) ⋀ n ∈ ℕ: P(n) → P(S(n)) ) → x ∈ ℕ : P(x) 

• Example 

– let P(x) be ((x = 0) ⋁ (∃b : S(b) = x)) 

– we want to show that P(x) is valid for all x ∈ ℕ  

– base case: P(0) ≡ ((0 = 0) ⋁ (∃b : S(b) = 0)) ≡ (true ⋁ (∃b : S(b) = 0)) ≡ true 

– inductive case: if n ∈ ℕ: P(n) is true then n ∈ ℕ: P(S(n)) has to be true, too 

P(S(n)) ≡ ((S(n) = 0) ⋁ (∃b : S(b) = S(n))) ≡ (false ⋁ (∃b : S(b) = S(n))) ≡ (∃b : S(b) = S(n)) 

             ≡ (S(n) = S(n)) ≡ (n = n) ≡ true 
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Russell’s Paradox (1901) 

• Definition 

– A paradox is a statement or group of statements that leads 
to a contradiction 
or a situation which (if true) defies logic 
or reason, similar to circular reasoning.  

• Examples 

– “This statement is false.” 

– “The following statement is false.  
The previous statement is true.” 

• Russell’s Paradox (1901) 

– the same paradox has been discovered a year before by 
Ernst Zermelo 

– let 𝑅 = 𝑥 𝑥 ∉ 𝑥}, then 𝑅 ∈ 𝑅 ↔ 𝑅 ∉ 𝑅 
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Bildergalerie 

M. C. Escher 

Lithographie, 1956 
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Treppauf, Treppab 

M. C. Escher 

Lithographie, 1960 



Principia Mathematica PM (1913) 

• Alfred North Whitehead (1861 – 1947) 

– English mathematician and philosopher (Trinity College) 

– co-author of “Principia Mathematica” 

• Bertrand Russell (1872 – 1970) 

– British philosopher, logician, mathematician, historian, and 
social critic (Trinity College, Cambridge) 

– Pupil of Whitehead at Trinity College, Cambridge 

– shows that Frege’s work on logic led to paradoxes (1901) 

– “The Principles of Mathematics” (1903) 

– “Principia Mathematica” (1910 – 1913) 

– three-volume work on the foundations of mathematics 

– an attempt to derive all mathematical truths from a well-
defined set of axioms and inference rules in symbolic logic 

– inspired by Hilbert’s 23 problems 

– tries to avoid paradoxes by building an elaborate system of 
types 

• Open question: Is PM complete and consistent? 
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Propositional Calculus of PM is Complete (1920s) 

• Emil Leon Post (1897 – 1954) 

– mathematician and logician (born in a Polish family, 
immigrated to New York when he was a child) 

– in his doctoral thesis, he proved that the propositional 
calculus of PM is complete 

– all tautologies are theorems, given the Principia axioms and  
the rules of substitution and modus ponens 

– he came very close to discovering the incompleteness of PM 

– invented truth tables independently of Wittgenstein and  
C.S. Peirce and put them to good mathematical use 

– Formulation 1: mathematical model of computation that was 
essentially equivalent to the Turing machine model (1936)  

– the unsolvability of his Post correspondence problem turned 
out to be exactly what was needed to obtain unsolvability 
results in the theory of formal languages 
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Hilbert’s Program (1918 – 1922) 

• David Hilbert (1862 – 1943) 

– German mathematician (Göttingen) 

– recognized as one of the most influential and universal  
mathematicians of the 19th and early 20th centuries 

– discovered and developed a broad range of fundamental  
ideas, e.g. Hilbert spaces, invariant theory and  
the axiomatization of geometry 

– «Naturerkennung der Logik» (1930) 

• Hilbert’s 23 Problems (1900) 

– No. 2: Prove that the axioms of arithmetic are consistent. 

• Hilbert’s Program 

– the main goal of Hilbert's program was to provide secure 
foundations for all mathematics, in particular this includes: 

– a formalization of all mathematics  

– completeness 

– consistency 

– decidability 

– conservation 
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Entscheidungsproblem (1928) 

• David Hilbert, Wilhelm Ackermann (1896 – 1962):  
«Grundzüge der theoretischen Logik» (1928), Göttingen 

«Das Entscheidungsproblem ist gelöst, wenn man ein 
Verfahren kennt, das bei einem vorgelegten logischen 
Ausdruck durch endlich viele Operationen die Entscheidung 
über die Allgemeingültigkeit bzw. Erfüllbarkeit erlaubt.» 

– the Entscheidungsproblem asks for an algorithm that 
takes as input a statement of a first-order logic  

– and answers "Yes" or "No" according to whether the 
statement is universally valid, i.e. valid in every structure 
satisfying the axioms 

– by the completeness theorem of first-order logic, a 
statement is universally valid if and only if it can be 
deduced from the axioms 

– the Entscheidungsproblem can also be viewed as asking 
for an algorithm to decide whether a given first-order 
logic statement is provable from the axioms using the 
rules of the first-order logic 
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First-order Logic is Consistent and Complete (1930) 

• Kurt Gödel (1906 – 1978) 

– Austrian (Vienna) American (Princeton) logician, mathematician  

– «Über die Vollständigkeit des Logikkalküls.» (1929), Diss.  
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Incompleteness of Number Theory (1931) 

• Monatshefte für Mathematik 38, 1931 

 

AT/21 

http://en.wikipedia.org/wiki/File:Kurt_g%C3%B6del.jpg


Incompleteness of Number Theory (1931)  

 

 

 

 

 

 

 

• For any consistent recursive axiomatic system powerful 
enough to describe the arithmetic of the natural 
numbers (Peano arithmetic), there are true propositions 
about the naturals that cannot be proved from the 
axioms.  

• This theorem is a major step towards a solution of the 
Entscheidungsproblem. However, there is still an open 
point concerning the universal validity of a statement, i.e. 
the validity in every structure satisfying the axioms. 
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Incompleteness of Number Theory : Proof Sketch 

• Gödel's proof rested on the idea that statements about numbers could be 
coded as numbers, and constructing a self-referential statement G  
to defeat Hilbert's hopes. 

 

• Formula G 

– let G be the formula in PM with the interpretation: “G is not a statement in PM” 

 

• Is G a statement in PM? 

– if G is a statement in PM, then ¬G is also a statement in PM : contradiction! 

– if G is not a statement in PM, then PM is consistent but incomplete, because G is 
also a true formula 
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Gödel Numbering 

• Gödel numbering (GN) 

– each formula in PM can be coded symbol by symbol into a unique natural 
number (codon) 

– each codon can be decoded back to its original formula 

 

• Example 

– formula F:  a : ¬S(a) = 0 

– GN f: 626’262’636’223’123’362’262’323’111’666 
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Symbol Codon 

0 666 

S 123 

= 111 

( 362 

) 323 

a 262 

¬ 223 

 626 

: 636 

… 



Formula G 

• ProofPair(a,a’) 

– a is the GN of the entire deduction of statement A’ with GN a’ 

• Subst(a’’,a,a’) 

– a’’ and a’ are the GNs of A’’ and A’, respectively 

– formula A’ is the result of a substitution of a free variable in formula A’’ by a  

• SelfSubst(a’’,a’) = Subst(a’’,a’’,a’) 

• formula U with GN u 

• ¬∃a,a’: ProofPair(a,a’) ⋀ SelfSubst(a’’,a’) 

• formula G 

– ¬∃a,a’: ProofPair(a,a’) ⋀ SelfSubst(“all a’’ substituted by number u” ,a’) 

• Interpretations of G 

– There are no numbers a and a’, so that both form a PM proof pair, and that a’ 
is the self-substitution of u. 

– There is no number a, which forms a PM proof pair together with the self-
substitution of u. 

– The formula whose GN is the self-substitution of u, is not a statement in PM. 

– G is not a statement in PM. 
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PM: Completeness and Consistency 
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Entscheidungsproblem is Undecidable (1936) 

• Alonzo S. Church (1903 – 1995) 

– American mathematician and logician (Princeton) 

– made major contributions to mathematical logic and the 
foundations of theoretical computer science 

– best known for the lambda calculus 

– Church-Turing theorem: proving the undecidability of the 
Entscheidungsproblem 

– Church-[Post]-Turing thesis 

• Lambda Calculus 

– equivalent in capabilities to Turing machines 

– influenced functional programming, e.g. LISP 

– C# and C++ provide lambda expressions 
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Recursion Theory (Computability Theory) 

• Stephen Cole Kleene (1909 – 1994) 

– American mathematician who, distinguished students of 
Alonzo Church 

– best known as one of the founders of the recursion theory 
(a branch of mathematical logic), together with Turing, 
Post, and others 

– concepts named after him: Kleene hierarchy, Kleene 
algebra, the Kleene star (Kleene closure), Kleene's 
recursion theorem and the Kleene fixpoint theorem 

– invented regular expressions 

 

• Recursion Theory 

– is a branch of mathematical logic, of computer science, and 
of the theory of computation 

– originated in the 1930s with the study of computable 
functions and Turing degrees 
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On computable numbers … (1936) 
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Turing Machine (1936) 

• A Turing Machine (TM) is a device with a finite amount of read-only 
“hard” memory (states), and an unbounded amount of read/write tape-
memory. There is no separate input. Rather, the input is assumed to 
reside on the tape at the time when the TM starts running. 

 

• Just as with Automata, TM’s can either be input/output machines 
(compare with Finite State Transducers), or yes/no decision machines. 
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Turing Machine: Example Program 

• Sample Rules: 

– If read 1, write 0, go right, repeat. 

– If read 0, write 1, HALT! 

– If read □, write 1, HALT! (the symbol □ stands for the blank cell) 

 

• Let’s see how these rules are carried out on an input with the reverse 
binary representation of 47: 
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Turing Machine: Formal Definition 

• Definition:  A Turing machine (TM) consists of a 7-tuple  
M = (Q, S, G, d, q0, qacc, qrej).  

– Q, S, and q0, are the same as for an FA. 

– qacc and qrej are accept and reject states, respectively. 

–  G is the tape alphabet which necessarily contains the blank symbol □, as 
well as the input alphabet S.  

–  d is as follows: 

 

– Therefore given a non-halt state p, and a tape symbol x, d(p,x) = (q,y,D) 
means that TM goes into state q, replaces x by y, and the tape head moves 
in direction D (left or right). 

• A string x is accepted by M if after being put on the tape with the 
Turing machine head set to the left-most position, and letting M run, M 
eventually enters the accept state. In this case w is an element of L(M) 
– the language accepted by M. 

}RL,{}),{-(:δ
rejacc

GG QQ qq
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Church-Post-Turing Thesis (1936) 

• First Goal of Turing’s Machine: A “computer” which is as powerful as any 
real computer / programming language 

– As powerful as C, or “Java++” 

– Can execute all the same algorithms / code 

– Not as fast though (move the head left and right instead of RAM) 

– Historically: A model that can compute anything that a human can compute.  
Before invention of electronic computers the term “computer” actually 
referred to a person who’s line of work is to calculate numerical quantities! 

– This is known as the [Church-[Post-]] Turing thesis, 1936. 

 

• Second Goal of Turing’s Machine: And at the same time a model that is 
simple enough to actually prove interesting epistemological results. 
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Decidability 

• A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function 
(in finite time). 

 

• A subset T of a set M is called decidable (or recursive), if the function  
f: M  {true, false} with f(m) = true if m ∈ T, is computable. 

 

• A more general class are the 
semi-decidable problems, for which 
the algorithm must only terminate 
in finite time in either the true or 
the false branch, but not the other. 

 

 

 

 

 

Input 

false true 

Algorithm 

(Turing Machine) 
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Computability Theory (Recursion Theory) 

• primitive recursive: predictably finite running time 

• LOOP: modern PL without if-then-else, while-loop, recursion 

• WHILE: modern programs without endless loops 
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Confluence of Ideas in 1936 

• Alonzo Church: “A note on the Entscheidungsproblem” 

– there is no solution for Hilbert’s Entscheidungsproblem 

• Alonzo Church: “An unsolvable problem of elementary number theory” 

– a function f is effectively calculable iff f can be defined in the λ-calculus 

• Stephen Kleene: “λ-definability and recursivness” 
– a function f is recursive iff f can be defined in the λ-calculus 

• Emil Post: “Finite combinatory processes” 
– introduction of a computational model, almost similar to Turing’s machine 

• Alan Turing: “On computational numbers, with an application to the 
Entscheidungsproblem” 

– there is no solution for Hilbert’s Entscheidungsproblem 

– a function f is computable iff f can be computed by a Turing machine 

– contains in three carefully distinct categories clear justifications for his model 

– introduces the concept of an interpreter (universal Turing machine) 

– computation time and memory requirements can be easily defined 
(complexity classes) 
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Universal Turing Machine 

• A universal Turing machine (UTM) is a Turing machine that can simulate 
an arbitrary Turing machine M on arbitrary input 

• The UTM essentially achieves this by reading both the description of the 
machine to be simulated as well as the input thereof from its own tape. 

• Is the origin of the stored program computer – used by John von 
Neumann (1946) for the "Electronic Computing Instrument" that now 
bears von Neumann's name: the von Neumann architecture. 
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Circle-free vs. Circular Turing Machines 

• Definition 

– a TM is called circle-free if it only takes finite time to write down the next 
symbol of a computable number; otherwise it is said to be circular 

• Theorem 

– Circle-Freeness is not decidable. (There is no TM which can decide if a given 
number is the description of a circle-free TM.) 

• Proof by contradiction 

– assumption 

– there exists a TM D(n), which can decide if a given number n is the description of a 
circle-free TM 

– construction of a circle-free machine M (combination of D and UTM) 

– let b be the output of M 

– M enumerates all naturals and checks each number i with D(i) for being the 
description of a circle-free TM 

– before testing number n, a certain number R(n – 1) of machines have been found 
to be the description of circle-free TMs 
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Circle-Freeness is not decidable: Proof (Cont.) 

• construction 

– in step n do:  

if D(n) sais circle-free, then  

R(n) = R(n – 1) + 1; 

compute the first R(n) output symbols of machine n using a UTM 

append the R(n)-th output symbol to output b 

else 

R(n) = R(n – 1) 

• application of the diagonal process 

– let k be the description of our machine M 

– what happens in step k? 

if D(k) sais circle-free, then 

R(k) = R(k – 1) + 1 

compute the first R(k) output symbols of machine k (our machine M) using a UTM, 
but output b only contains R(k) – 1 valid output symbols, so the R(k)-th output 
symbol would never be found, and therefore M is circular contradiction 

else D(k) sais circular 

but M is by construction circle-free  contradiction 
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Halting Problem 

• The halting problem is a famous example of an undecidable  
(semi-decidable) problem. Essentially, you cannot write a computer 
program that decides whether another computer program ever 
terminates (or has an infinite loop) on some given input. 

 

• In pseudo code, we would like to have: 

 

 procedure halting(program, input) { 

 if program(input) terminates  

 then return true  

 else return false 

} 
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Halting Problem Proof 

• Now we write a little wrapper around our halting procedure 

 

 procedure test(program) { 

 if halting(program,program) 

 then loop forever 

 else return 

} 

 

• Now we simply run: test(test)! Does it halt?!? 

– If halting(test,test) = true, test(test) should terminate, but it does not! 

– If halting(test,test) = false, test(test) should not terminate, but it does! 

 

• Wicked! Our (generic) halting procedure is wrong, no matter what! 

• We have a contradiction. No halting procedure can exist. 
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Problem Reduction 

• a quick way of solving problem A is  

– to transform each instance of A into instances of the already solved problem B 

– solve these using our existing solution 

– use these solutions to obtain our final solution 

• suppose we have a problem A that we've proven is hard to solve, and we 
have a similar problem B 

– we might suspect that B, too, is hard to solve 

– we argue by contradiction: suppose B is easy to solve 

– then, if we can show that every instance of A can be solved easily by 
transforming it into instances of B and solving those, we have a contradiction 

– this establishes that B is also hard to solve 
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Undecidability of the Entscheidungsproblem 

• “[…] if there is a machine E, then there is a general process for determining whether a given 
machine M prints 0 infinitely often.” 

• “Similarly there is a general process for determining whether M prints 1 infinitely often. By a 
combination of these processes we have a process for determining whether M prints an 
infinity of figures, i.e. we have a process for determining whether M is circle-free. There can 
therefore be no machine E.” 

• “Corresponding to each computing machine M we construct a formula Un(M) and we show 
that, if there is a general method for determining whether Un(M) is provable, then there is a 
general method for determining whether it ever prints 0, and this is impossible.” 

• “Hence the Entscheidungsproblem cannot be solved.”  
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TM M 

Is M 
circle-free? 

yes/no 

TM M 

Does M 
print a 0? 

yes/no 

computable 

computable 

D ≤(n) E 

formula Un(M) 

Is Un(M)  
provable? 

yes/no 

computable 

computable 

E ≤(n) F 

D E F 



Complexity Classes: P and NP 

• P is the complexity class containing decision problems which can be 
solved by a Turing machine in time polynomial of the input size. 

 

• NP is the class of decision problems solvable by a non-deterministic 
polynomial time Turing machine such that the machine answers "yes," if 
at least one computation path accepts, and answers “no,” if all 
computation paths reject.  

– Quite similarly to the nondeterministic finite automaton from Chapter 1. 

– Informally, there is a Turing machine which can check the correctness of an 
answer in polynomial time. 

– E.g. one can check in polynomial time whether a traveling salesperson path 
connects n cities with less than a total distance d.  

– Or one can check in polynomial time whether two big numbers are the factors 
of an even bigger number (with n digits). 
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P vs. NP 

• An important notion in this context is the large set of NP-complete 
decision problems, which is a subset of NP and might be informally 
described as the "hardest" problems in NP. If there is a polynomial-time 
algorithm for even one of them, then there is a polynomial-time algorithm 
for all the problems in NP.  

– E.g. Given a set of n integers, is there a non-empty subset which sums up to 
0? This problem was shown to be NP-complete. 

– Also the traveling salesperson problem is NP-complete, or Tetris, or 
Minesweeper. 

 

• One of the big questions in Math and CS: Is P = NP? 

– Or are there problems which cannot be solved in polynomial time. 

– Big practical impact (e.g. in Cryptography). 

– One of the seven $1M problems by the Clay Mathematics Institute of 
Cambridge, Massachusetts. 
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Turing Test (1950) 

• Definition: The Turing test is a test of a machine's ability 
to exhibit intelligent behavior, equivalent to  
or indistinguishable from, that of an actual human.  

• original illustrative example 

– a human judge engages in a natural language conversation 
with a human and a machine designed to generate 
performance indistinguishable from that of a human being 

– all participants are separated from one another 

– if the judge cannot reliably tell the machine from the 
human, the machine is said to have passed the test 

• the test does not check the ability to give correct 
answers  

• it checks how closely the answers resemble typical 
human answers 

• the conversation is limited to a text-only channel such as 
a computer keyboard and screen 
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http://www.youtube.com/watch_popup?v=ZZlRMsrOvB4&vq=medium
http://www.youtube.com/watch_popup?v=jq0ELhpKevY&vq=small


Bedtime Reading 

 

If you’re leaning towards “human = machine” 

 

 

 

 

 

 

 

 

 

 

If you’re leaning towards “human ⊃ machine”  
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