ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

HS 2012

Prof. C. Stamm / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems

Solution to Exercise Sheet 3

1 Finite Automata and Regular Languages [Exam]

a) We could use the systematic transformation scheme presented in the lecture (slide 1/75). Considering the large number of states, however, this will easily lead to an explosion of states in the derandomized automaton. Hence, we build the deterministic finite automaton in a step-wise manner, only creating those states that are actually required: Initially, the automaton requires a 0. Subsequently, only a 1 is accepted. Including the various transitions, this 1 can lead to three different states, namely states 2, 3, and 4.

$$\rightarrow \fbox{1} \xrightarrow{0} \fbox{2,4} \xrightarrow{1} \fbox{2,3,4}$$

In any of the states 2, 3, and 4, only a 1 is accepted. Assume that the automaton is currently in state 2, this 1 can lead to states $\{2, 3, 4\}$ when including all ε -transitions. When in state 3, the 1 leads to states $\{2, 3, 4, 5\}$ and finally, when being in state 4, the reachable states given a 1 are $\{2, 3, 4\}$. Hence, a 1 leads from state $\{2, 3, 4\}$ to state $\{2, 3, 4, 5\}$. Repeating the same process for state $\{2, 3, 4, 5\}$, we can see that, again, only a 1 is accepted, which leads to state $\{2, 3, 4, 5, 6\}$. Because the state 6 in the original NFA was an accepting state, $\{2, 3, 4, 5, 6\}$ is also accepting in the DFA. From state $\{2, 3, 4, 5, 6\}$, an additional 1 will lead to another accepting state $\{1, 2, 3, 4, 5, 6\}$. And from this state, any subsequent 1 returns to state $\{1, 2, 3, 4, 5, 6\}$ as well.

What happens if a 0 occurs in the input? This is feasible only when the deterministic state includes either state 1 or state 6. In state $\{2, 3, 4, 5, 6\}$, a 0 necessarily leads to state $\{4\}$, whereas in state $\{1, 2, 3, 4, 5, 6\}$ a 0 leads to state $\{2, 4\}$. In both of these states, the only acceptable input symbol is a 1 and leads to the state $\{2, 3, 4\}$. Hence, the deterministic finite automaton looks like this:

It can easily be seen, that first the states $\{4\}$, $\{2,4\}$ and then the states $\{2,3,4,5,6\}$, $\{1,2,3,4,5,6\}$ can be merged and hence, the automaton can be reduced to the one shown in the next figure.

This is not a DFA yet, because the crash state is still missing. The final deterministic automaton looks like this:

b) By studying the above automaton, it can be seen that the following regular language is accepted: $01111^*(01111^*)^* = (0111^+)^+$.

2 Pumping Lemma [Exam]

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length p. Construct a suitable word $w \in L$ with $|w| \ge p$ ("there exists $w \in L$ ") and show that for all divisions of w into three parts, w = xyz, with $|x| \ge 0$, $|y| \ge 1$, and $|xy| \le p$, there exists a pumping exponent $i \ge 0$ such that $w' = xy^i z \notin L$. If this is the case, L is not regular.

a) Language L_1 can be shown to be non-regular using the pumping lemma. Assume for contradiction that L_1 is regular and let p be the corresponding pumping length. Choose w to be the word $0110^p 1^p$. Because w is an element of L_1 and has length more than p, the pumping lemma guarantees that w can be split into three parts, w = xyz, where $|xy| \leq p$ and for any $i \geq 0$, we have $xy^i z \in L_1$. In order to obtain the contradiction, we must prove that for every possible partition into three parts w = xyz where $|xy| \leq p$, the word w cannot be pumped. We therefore consider the various cases.

- (1) If y starts with any suffix of the first three symbols (i.e. 011) of w, the word w cannot be pumped without violating either the constraints a = 1 or b = 2 (e.g. $010110^{p}1^{p}$ for y = 01) or creating a word with an illegal structure (e.g. $0110110^{p}1^{p}$ for y = 011).
- (2) If y consists of only 0s from the second block, the word w' = xyyz has more 0s than 1s in the last |w'| 3 symbols and hence $c \neq d$.

Note that y cannot contain 1s from the second block because of the requirement $|xy| \leq p$. We have shown that for all possible divisions of w into three parts, the pumped word is not in L_1 . Therefore, L_1 cannot be regular and we have a contradiction.

b) With the adapted language L_2 , the proof of non-regularity is much more tricky! Specifically, non-regularity of L_2 cannot be proven using the pumping lemma, because any word in L_2 can actually be pumped! Consider for instance a word w of the form 0110^p1^p . In this case, we can split w into the three parts $x = 0, y = 11, z = 0^p1^p$, which is in accordance with the rules of the pumping lemma. It can be seen, however, that any word xy^iz is also in L_2 ! That is, the language L_2 can be pumped and yet, it is not regular as shown below.

Assume for contradiction that there exists a finite automaton A which accepts the language L_2 . Every word that starts with the input-sequence 0110 is only accepted if the remainder of the word has the form $0^{c-1}1^c$ for some integer c > 0. Let q_1 be the state reached after the input 0110. Given the automaton A, we can construct a regular automaton A' that is equivalent to A with the only difference that its initial state is q_1 . By the definition of A, this adapted finite automaton A' accepts all words of the form $0^{c-1}d^c$. However, as shown on slide 1/95 of the script, the language $0^{c-1}d^c$ is not regular. Hence, A' and thus A cannot be finite automata. Because there exists a finite automaton for every regular language, it follows that L_2 cannot be regular. Language L_2 shows that while every regular language that can be pumped.

Variant: We can alternatively use the fact that if two languages L and L' are regular, the language defined by the intersection of the two languages $L \cap L'$ is regular as well (cf. p. 1/41). Consider the regular language $L_3 = \{w \in 0110^*1^*\}$. Notice that the intersection of L_3 with $L_2 = \{0^a 1^{b} 0^c 1^d \mid a, b, c, d \ge 0 \text{ and if } a = 1 \text{ and } b = 2 \text{ then } c = d\}$ contains exactly all words $w \in \{0110^n 1^n \mid n \ge 0\}$. This, however, is the exact language L_1 we proved not to be regular in the first part of this exercise. If we assume L_2 to be regular, L_1 must be regular as well, since $L_1 = L_2 \cap L_3$. This is a contradiction. Thus L_2 cannot be regular.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only works in the direction presented. That is, for an operator $\diamond \in \{\cup, \cap, \bullet\}$, we have:

If L_1 and L_2 are regular, then $L = L_1 \diamond L_2$ is also regular.

If either L_1 or L_2 or both are non-regular, we cannot deduce the non-regularity of L or vice-versa. Moreover, L being regular does not imply that L_1 and L_2 are regular as well. This may sound counter-intuitive which is why we give examples for the three operators.

- $L = L_1 \cup L_2$: Let L_1 be any non-regular language and L_2 its complement. Then $L = \Sigma^*$ is regular.
- $L = L_1 \cap L_2$: Let L_1 be any non-regular language and L_2 its complement. Then $L = \emptyset$ is regular.
- $L = L_1 \bullet L_2$: Let $L_1 = \{a^*\}$ (a regular language) and $L_2 = \{a^p \mid p \text{ is prime}\}$ (a non-regular language) then $L = \{aaa^*\}$ is regular.

Hence, to prove that a language L_x is non-regular, you assume it to be regular for contradiction. Then you combine it with a *regular* language L_r to obtain a language $L = L_x \diamond L_r$. If L is non-regular, L_x could not have been regular either.

3 Transforming Automata [Exam]

a) The regular expression can be obtained from the finite automaton using the transformation presented in the script on slide 1/85. After ripping out state q_2 , the corresponding GNFA looks like this:

After also removing state q_1 , the GNFA looks as follows.

Eliminating the last state q_3 yields the final solution, which is $(01^*0)^*1(0 \cup 11^*0(01^*0)^*1)^*$. Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular expression. The order q_3, q_2, q_1 , for example, results in $((0 \cup 10^*1)1^*0)^*10^*$.

b) The best way to solve this problem is to ask, which words are actually not in $\Phi(L)$. The word 1, for instance must be in $\Phi(L)$, because the word 10 is in L. Moreover, the word 11 is in $\Phi(L)$, because 1101 is in L. Also, 10, 01, and 00 are in $\Phi(L)$ because of the words 1000, 0101, and 0010, respectively. More generally, it can be seen from every state in the automaton and for all $k \geq 2$, there is a sequence of k symbols that lead to the accepting state. Hence, all words of length at least 2 are in $\Phi(L)$. Also, as seen before, the word 1 is in $\Phi(L)$. The only words that are not in $\Phi(L)$ are therefore 0 and ε : 0 is not in $\Phi(L)$, because there is no word of length 2 in L starting with 0 that leads to an accepting state, and ε is not in $\Phi(L)$, because $\varepsilon \notin L$. With this, constructing the resulting DFA is now easy.

