Theory of Renting Skis

- Scenario
 - you start a new hobby, e.g. skiing
 - you don’t know whether you will like it
 - expensive equipment: ~1 kFr

- 3 Alternatives
 - just buy a new equipment (optimistic)
 - always renting (pessimistic)
 - first rent it a few times before you buy (down-to-earth)

- You choose the pragmatic way, but Murphy’s law will strike!
 - first you rent, but as soon as you buy, you will lose interest in skiing

Overview: Worst-Case Analysis of DES

- Ski Rental
 - Randomized Ski Rental
 - Lower Bounds

- The TCP Acknowledgement Problem
- The TCP Congestion Control Problem
 - Bandwidth in a Fixed Interval
 - Multiplicatively Changing Bandwidth
 - Changes with Bursts

- Many application domains are not Poisson distributed!
 - sometimes it makes sense to assume that events are distributed in the worst possible way (e.g. in networks, packets often arrive in bursts)

Ski Rental Problem

- Expenses
 - buying: 1 kFr
 - renting: 1 kFr per month

- Scenario
 - first rent it for \(z \) months, then buy it
 - after \(u \) months you will lose your interest in skiing
 - 2 cases:
 \[u \leq z \Rightarrow c^*(u) = u \text{ kFr} \]
 \[u > z \Rightarrow c^*(u) = (z + 1) \text{ kFr} \]

- If you are a clairvoyant, then ...
 - \(u \leq 1 \) month \(\Rightarrow \) just renting is better \(\Rightarrow c^*(u) = u \text{ kFr} \)
 - \(u > 1 \) month \(\Rightarrow \) just buying is better \(\Rightarrow c^*(u) = 1 \text{ kFr} \)
 - \(\Rightarrow c^*(u) = \min(u, 1) \)
Competitive Analysis

• Definition
 An online algorithm \(A \) is \(c \)-competitive if for all finite input sequences \(I \)
 \[
 \text{cost}_A(I) \leq c \cdot \text{cost}_{\text{opt}}(I) + k
 \]
 where \(k \) is a constant independent of the input.
 If \(k = 0 \), then the online algorithm is called strictly \(c \)-competitive.

• When strictly \(c \)-competitive, it holds
 \[
 \frac{\text{cost}_A(u)}{\text{cost}_{\text{opt}}(u)} \leq c
 \]

• Example
 – Ski rental is strictly 2-competitive. The best algorithm is \(z = 1 \).

Randomized Ski Rental

• Deterministic Algorithm
 – has a big handicap, because the adversary knows \(z \) and can always present a \(u \)
 which is worst-case for the algorithm
 – only hope: algorithm makes random decisions

• Randomized Algorithm
 – chooses randomly between 2 values \(z_1 \) and \(z_2 \) (with \(z_1 < z_2 \))
 with probabilities \(p_1 \) and \(p_2 = 1 - p_1 \)
 – if \(u \leq z_1 \)
 \[
 \text{cost}_A(u) = p_1 \cdot (z_1 + 1) + p_2 \cdot u
 \]
 – if \(z_1 < u \leq z_2 \)
 \[
 \text{cost}_A(u) = p_1 \cdot (z_1 + 1) + p_2 \cdot (z_2 + 1)
 \]
 – if \(z_2 < u \)
 \[
 \text{cost}_A(u) = p_1 \cdot (z_1 + 1) + p_2 \cdot (z_2 + 1)
 \]
 – adversary chooses randomly
 – \(u_1 = z_1 + \varepsilon \) with probability \(q_1 \)
 – \(u_2 = z_2 + \varepsilon \) with probability \(q_2 = 1 - q_1 \)

• Example
 – \(z_1 = \frac{3}{5} \), \(z_2 = 1 \), \(p_1 = 2/5 \), \(p_2 = 3/5 \)
 – \(E[c] = \frac{\text{cost}_A}{\text{cost}_{\text{opt}}} = 1.8 \)

Randomized Ski Rental with infinitely many Values (1)

• Let \(r(u, z) \) be the competitive ratio
 for all pairs of \(u \) and \(z \)
• We are looking for the expected competitive ratio \(E[c] \)

• Adversary chooses \(u \) with uniform distribution
 \[
 E[c] = \frac{\int \int r(u, z) du dz}{\int du}
 \]
 \[
 = \frac{1}{2} + \int_{z=0}^{1} \int_{u=0}^{z} \frac{z+1}{u} du dz
 \]
 \[
 = 1.75
 \]

Randomized Ski Rental with infinitely many Values (2)

• Algorithm chooses \(z \) with probability distribution \(p(z) \)
 – it chooses \(p(z) \) such that it minimizes \(E[c] \)
• Adversary chooses \(u \) with probability distribution \(d(u) \)
 – it chooses \(d(u) \) such that it maximized \(E[c] \)
 \[
 E[c] = \frac{\int_0^1 \int_0^{z+1} p(z) d(u) du dz + \int_0^1 \int_0^u p(z) d(u) du dz}{\int_0^1 \int_0^{z+1} p(z) d(u) du dz + \int_0^1 \int_0^u p(z) d(u) du dz}
 \]
 \[
 \int p(z) = \int d(u) = 1
 \]
• How to find these probability distributions?
 – This is a very hard task!
 → We should make the problem independent of the adversarial distribution \(d(u) \).
Randomized Ski Rental with infinitely many Values (3)

- **Idea**

 Choose the algorithm’s probability function \(p(z) \) such that \(\text{cost}_z(u) \leq c \cdot \text{cost}_{\text{opt}}(u) \) for all \(u \)

 \(\rightarrow \) adversarial distribution \(d(u) \) doesn’t matter anymore

- \(\text{cost}_{\text{opt}}(u) = u \) for all \(u \) between 0 and 1

\[
\int_0^u (z + 1)p(z)dz + \int_u^1 u \cdot p(z)dz \leq c \cdot u
\]

with \(\int_0^1 p(z)dz = 1 \)

- Having a hunch: the best probability function \(p(z) \) will be an equality

 \(\rightarrow \) With \(p(z) = \frac{z^2}{c-1} \) we have an algorithm that is \(\frac{c}{c-1} \)-competitive in expectation.

Can we get any better???

- **Lower Bounds**

 - von Neumann / Yao Principle

 Choose a distribution over problem instances (for ski rental, e.g. \(d(u) \)).

 If for this distribution all deterministic algorithms cost at least \(c \),

 then \(c \) is a lower bound for the best possible randomized algorithm.

 - Ski Rental

 \(\rightarrow \) we are in a lucky situation, because we can parameterize all possible deterministic algorithms by \(z \geq 0 \)

 \(\rightarrow \) choose a distribution of inputs with \(d(u) \geq 0 \) and \(\int d(u) = 1 \)

 - Examples: \(d(u) = \frac{1}{2} \) for \(0 \leq u \leq 1 \) and \(d(\infty) = \frac{1}{2} \)

 \(\rightarrow \) \(\text{cost}_z(d(u)) = 1 \)

 \(\rightarrow \) \(\text{cost}_{\infty}(d(u)) = 1 + z/2 - z^2/4 \geq 1 \)

 \(\rightarrow \) \(\text{cost}_z(d(u)) = 5/4 \)

 \(\rightarrow \) \(\text{cost}_{\infty}(d(u)) = 1/4 + (z + 1)/2 > 5/4 \)

 \(\rightarrow \) \(\frac{c}{\text{cost}_{\text{opt}}} = 1/\frac{1/4}{4} = 4/3 = 1.33 \)

TCP: Transmission Control Protocol

- Layer 4 Networking Protocol

 - transmission error handling

 - correct ordering of packets

 - exponential (“friendly”) slow start mechanism: should prevent network overloading by new connections

 - flow control: prevents buffer overloading

 - congestion control: should prevent network overloading

Packet Acknowledgment

- Sender

 - Sequence number in packet header

 - “Window” of up to \(N \) consecutive unack’ed packets allowed

 - ACK\((n) \): ACKs all packets up to and including sequence number \(n \)

 \(\rightarrow \) a.k.a. cumulative ACK

 \(\rightarrow \) sender may get duplicate ACKs

 \(\rightarrow \) timer for each in-flight packet

 \(\rightarrow \) \text{timeout}(n): retransmit packet \(n \) and all higher seq# packets in window

 - already ack’ed

 - sent, not yet ack’ed

 - usable, not yet sent

 - not usable
The TCP Acknowledgment Problem

• Definition
 The receiver’s goal is to devise a scheme which minimizes the number of
 acknowledgments plus the sum of the latencies for each packet, where the
 latency of a packet is the time difference from arrival to acknowledgment.

• Given
 \(n \) packet arrivals, at times: \(a_1, a_2, \ldots, a_n \)
 \(k \) acknowledgments, at times \(t_1, t_2, \ldots, t_k \)
 latency(\(i \)) = \(t_j - a_i \) where \(j \) such that \(t_{j-1} < a_i \leq t_j \)

• Minimize
 \[k + \sum_{i=1}^{n} \text{latency}(i) \]

The TCP Acknowledgment Problem: z=1 Algorithm (1)

• z = 1 Algorithm is: Whenever a rectangle with area \(z = 1 \) does fit
 between the two curves, the receiver sends an acknowledgement, acknowledging
 all previous packets.

The TCP Acknowledgment Problem: z=1 Algorithm (2)

• Lemma
 – The optimal algorithm sends an ACK between any pair of consecutive ACKs by
 algorithm with \(z = 1 \).

• Proof
 – For the sake of contradiction, assume that, among all algorithms who achieve
 the minimum possible cost, there is no algorithm which sends an ACK
 between two ACKs of the \(z = 1 \) algorithm.
 – We propose to send an additional ACK at the beginning (left side) of each
 \(z = 1 \) rectangle.
 Since this ACK saves latency 1, it compensates the cost of the extra ACK.
 – That is, there is an optimal algorithm who chooses this extra ACK.

The TCP Acknowledgment Problem: z=1 Algorithm (3)

• Theorem: The \(z = 1 \) algorithm is 2-competitive.

• Similarity to Ski Rental
 – it’s possible to choose any \(z \)
 – if you wait for a rectangle of size \(z \) with probability \(p(z) = e^{\frac{z}{z-1}} \)
 \(\rightarrow \) randomized TCP ACK solution, which is \(e/(e-1) \) competitive
Simple TCP Congestion Scenario

- two equal senders, two receivers
- one router with infinite buffer space and with service rate C
- large delays when congested
- maximum achievable throughput

The TCP Congestion Control Problem

- Main Question
 How many packets per second can a sender inject into the network without overloading it?

- Assumptions
 - sender does not know the bandwidth between itself and the receiver
 - the bandwidth might change over time

- Model
 - time divided into periods $\{t\}$
 - unknown bandwidth threshold u_t
 - sender transmits x_t packets

- Severe Cost and Gain Function
 - $\text{gain}_t = u_t - \text{cost}_t$
 - $x_t \leq u_t : \text{cost}_t = u_t - x_t \rightarrow \text{gain}_t = x_t$
 - $x_t > u_t : \text{cost}_t = u_t \rightarrow \text{gain}_t = 0$

The TCP Congestion Control Problem: The Dynamic Model

- Competitive Analysis Definition
 An online algorithm A is strictly c-competitive if for all finite input sequences I
 $\text{cost}_A(I) \leq c \cdot \text{cost}_{\text{opt}}(I)$
 or
 $c \cdot \text{gain}_A(I) \geq \text{gain}_{\text{opt}}(I)$.

- The Dynamic Model
 - algorithm: chooses a sequence $\{x_t\}$
 - adversary: knows the algorithm’s sequence and chooses a sequence $\{u_t\}$

- Problem
 - Adversary is too strong: $\forall t: u_t < x_t \rightarrow \text{gain}_A = 0$

- Reasonable restrictions
 - Bandwidth in a fixed interval: $u_t \in [a, b]$
 - Multiplicatively or additively changing bandwidth from step to step
 - Changes with bursts

Bandwidth in a Fixed Interval: Deterministic Algorithm

- Preconditions
 - adversary chooses $u_t \in [a, b]$
 - algorithm is aware of the lower bound a and the upper bound b

- Deterministic Algorithm
 - If the algorithm plays $x_t > a$ in round t, then the adversary plays $u_t = a$
 $\rightarrow \text{gain} = 0$
 - Therefore the algorithm must play $x_t = a$ in each round in order to have at least gain $= a$.
 - The adversary knows this, and will therefore play $u_t = b$.
 - Therefore, $\text{gain}_{\text{alg}} = a$, $\text{gain}_{\text{opt}} = b$, competitive ratio $c = b/a$.

5/19
Bandwidth in a Fixed Interval: Randomized Algorithm

- Let’s try the ski rental trick!
 - For all possible inputs \(u \in [a, b] \) we want the same competitive ratio:
 \[c \text{gain}_{alg}(u) = \text{gain}_{opt}(u) = u \]

- Randomized Algorithm
 - We choose \(x = a \) with probability \(p_a \) and any value in \(x \in (a, b] \) with probability density function \(p(x) \), with
 \[p_a + \int_a^b p(x)dx = 1. \]

- Theorems
 - There is an algorithm that is \(c \)-competitive, with \(c = 1 + \ln(b/a) \).
 - There is no randomized algorithm which is better than \(c \)-competitive, with \(c = 1 + \ln(b/a) \).

- Remark
 - Upper and lower bound are tight.

Changes with Bursts

- Bursty Adversary
 - 2 parameters: \(\mu \geq 1 \) and maximum burst factor \(B \geq 1 \)
 - adversary chooses \(u_{t+1} \) from the interval
 \[\left[\frac{u_t}{\beta_{t+1}}, u_t \cdot \beta_{t+1} \cdot \mu \right] \]
 - where \(\beta_t = \min \{ B, \beta_{t-1} \frac{\mu}{c_{t-1}} \} \)
 is the burst factor at time \(t \) and
 where \(c_{t+1} = u_t / u_{t-1} \) if \(u_t > u_{t-1} \) and \(u_{t-1} / u_t \) otherwise

\[u_t \]
\[\forall t : u_{t+1} \geq u_t \]
\[t \]

Multiplicatively Changing Bandwidth

- Preconditions
 - adversary chooses \(u_{t+1} \) such that \(u_t / \mu \leq u_{t+1} \leq \mu u_t \) with \(\mu \geq 1 \), e.g. 1.05
 - algorithm knows \(u_1 \) and \(\mu \)

- Algorithm \(A_1 \)
 - after a successful transmission in period \(t \), the algorithm chooses \(x_{t+1} = \mu x_t \)
 - otherwise: \(x_{t+1} = x_t / \mu^3 \)

- Theorem
 - The algorithm \(A_1 \) is \((\mu^4 + \mu)\)-competitive

- Algorithm \(A_2 \)
 - after a successful transmission in period \(t \), the algorithm chooses \(x_{t+1} = \mu x_t \)
 - otherwise: \(x_{t+1} = x_t / 2 \)

- Theorem
 - The algorithm \(A_2 \) is \((4\mu)\)-competitive