/‘ﬂ’ i—;
ETH A

Distributed ;’5‘»‘-

Eidgendssische Technische Hochschule Ziirich ““ : I‘ u
Swiss Federal Institute of Technology Zurich Computmg ‘?‘\ e B
HS 2012 S. Welten / Prof. R. Wattenhofer

Distributed Systems Part 11

Solution to Exercise Sheet 5

1 Sequential Consistency: Warm Up

a) The following figure shows an execution that is not sequentially consistent. On the one
hand, the read operation is required to happen before the write operation according to
the return values (r4 : 74 < wa(u := 1), where ox means that operation o was executed
by client X). On the other hand, the client partial order requires the write operation to
happen before the read operation (<.: wa(u:=1) <ry4). As these two conditions cannot
be fulfilled at the same time, the execution is not sequentially consistent.

write(u:=1) —

read(u)
[>
()

A

b) The following figure shows how the execution can be made sequentially consistent by adding
one write operation. A valid sequence is: (1) wa(u:=1), (2) wp(u = 2), (3) ra.

write(u:=1) -

read(u) |:
2

— write(u:=2)

¢) The following figure shows how the execution can again be made not sequentially consistent
by adding a read operation at the end.

write(u:=1) —

read(u) |:
2

- write(u:=2)

read(u)
I,

A B

The execution is not sequentially consistent, as:

o r4(together with <.) : wa(u:=1) < wp(u:=2)

o rp:wp(u:=2) <ws(u:=1)

Another possibility to construct an execution that is not sequentially consistent is shown
below. Here the argument is analogous to subtask a).

write(u:=1) —

read(u) |:
2

— write(u:=2)

:| read(u)
(0]

2 Sequential Consistency with 3 Clients

The solution of this task requires some basic ideas. We know that an execution is not sequentially
consistent if it exhibits circular dependencies. Thus, a first idea is to make client A dependent
from client B, client B dependent from client C', and client C' again dependent from client A, as
shown below:

C | B

As soon as one node of the resulting triangle is removed, only simple dependencies remain (no
matter which node is removed) and the execution becomes sequentially consistent. To construct
the required dependencies, it seems reasonable that each client has to perform at least one write
operation. Thus, we can first place these three write operations on our replica. Let’s assume
that the write of client A happens first, followed by the write of B and C' (observe that the
order does not matter, as so far everything is fully symmetric). We then introduce the first two
of the required dependencies by making a read from A follow the write of B, a read from B
follow the write of C. Ideally, we could now just introduce a read from C' following the write
of A. However, this would require to place C’s read before C’s write operation in C’s client

order, which is not what we want. To nevertheless introduce the required dependency between
C and A, we thus introduce a second write operation of client A (which is followed by C’s read).
To finally close the circle, we have to introduce another dependency between A’s first and A’s
second write operation (order as seen on the replica). Basically, we want the second write to be
before the first one (as indicated by the dashed arrow in the figure below). This can be achieved
by placing the second write before the first one in A’s client order.

The resulting execution looks as illustrated below:

write(u:=1)

write(u:=2) —

|

write(u:=3) —

=

write(u:=4)

read(u) |:D
4

read(u) I:
1

The following relationships show that we have indeed constructed the intended circular de-
pendency which makes the execution not sequentially consistent:

e < on client A: write(u := 1) < write(u := 2)

o 4 (together with <¢): write(u := 2) < write(u := 3)
o rp (together with <¢): write(u := 3) < write(u := 4)
o ¢ (together with <¢): write(u :=4) < write(u := 1)

The execution without client A is sequentially consistent and looks as follows:

write(u:=3) T |

read(u)
[—
4

B C

A valid sequence is: (1) write(u :=3) (2) write(u:=4) (3) rp (4) re.
The execution without client B is sequentially consistent and looks as follows:

write(u:=1)
write(u:=2)
—
read(u)
—
2
write(u:=4) o
read(u) I:
1
A C

A valid sequence is: (1) write(u :=4) (2) write(u := 1) (3)rc (4) write(u := 2) (5) ra.
The execution without client C' is sequentially consistent and looks as follows:

write(u:=1)

write(u:=2) —

write(u:=3) —

read(u) [E
3
read(u)
{ >
3

A B

A valid sequence is: (1) write(u := 1) (2) write(u := 2) (3) write(u :=3) (4) ra (5) rp.

3 Three Phase Commit

a) The five steps are:

Step 2: Participants wait for VOTE request

Step 3: Coordinator waits for votes

)
)
iii) Step 4: Participants wait for coordinators decision
) Step 5: Coordinator waits for acknowledgments
)

Step 6: Participants wait for COMMIT
b) The reactions are:

i) no one has yet decided on commit, so abort
ii) no one has yet decided on commit, so abort

iii) some processes already know the coordinators decision, some do not. Some might
already aborted, or have sent ACK. The processes have to elect a new coordinator,
the new coordinator has to find out what the decision was and resend the decision to
all the processes which do not already know it.

iv) a crashed processes did not send an ACK. But the transaction can continue because
the correct processes are prepared to commit.

v) the next message must be COMMIT, but committing would violate the non-blocking
property as some processes may not yet have received PREPARE. So the processes
first have to elect an new coordinator, which has to find out about the decision and
inform uninformed processes about it.

c) Assume there are three processes pi, pa and ps. Process p; is the coordinator. All the
processes vote YES on the transaction. p; receives and processes the votes, but po and ps
detach from p; before receiving the PREPARE message sent by p;.

p2 is elected as new coordinator. It sees both ps and ps are undecided. Not knowing
their state ps decides to abort, sending the ABORT message. ps receives the message, then
detaches from ps. If now p; and p3 become connected they cannot progress: p; already
decided to commit, ps already decided to abort.

