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Overview 

 
• Introduction 
• Strong Consistency 

– Crash Failures: Primary Copy, Commit Protocols 
– Crash-Recovery Failures: Paxos, Chubby 
– Byzantine Failures: PBFT, Zyzzyva 

• CAP: Consistency or Availability? 
• Weak Consistency 

– Consistency Models 
– Peer-to-Peer, Distributed Storage, Cloud Computing 

• Computation: MapReduce 
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Computability vs. Efficiency 

 
• In the last part, we studied computability 

– When is it possible to guarantee consensus? 
– What kind of failures can be tolerated? 
– How many failures can be tolerated? 

 
 
 
 

• In this part, we consider practical solutions 
– Simple approaches that work well in practice 
– Focus on efficiency 

 

0 1 1 0 1 0 
1 Worst-case 

scenarios! 
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Fault-Tolerance in Practice 

 
 
 
 
 
 

• Fault-Tolerance is achieved through replication 

??? 

Replicated 
data 
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Replication is Expensive 

 
• Reading a value is simple  Just query any server 
• Writing is more work  Inform all servers about the update 

– What if some servers are not available? 

r 
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w 

w 

Read: Write: 
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Primary Copy 

 
• Can we reduce the load on the clients? 
• Yes! Write only to one server (the primary copy), and let primary copy 

distribute the update 
– This way, the client only sends one message in order to read and write 

Primary 
copy 

w 
w 

w 

w 

w 

r 

Read: Write: 
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Problem with Primary Copy 

 
• If the clients can only send read requests to the primary copy, the system 

stalls if the primary copy fails 
• However, if the clients can also send read requests to the other servers, 

the clients may not have a consistent view 

w 

w 

w 

r 

Reads an 
outdated value!!! 
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State Machine Replication? 

 
• The state of each server has to be updated in the same way 
• This ensures that all servers are in the same state whenever all updates 

have been carried out! 
 
 
 
 
 
 
 
 

• The servers have to agree on each update 
  Consensus has to be reached for each update! 

A B … A C 

A B … A 

C 

A B … A C 

C 
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Impossible to guarantee consensus using a 
deterministic algorithm in asynchronous 
systems even if only one node is faulty 

 
 

Theory Practice 

Consensus is required to guarantee 
consistency among different replicas 
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From Theory to Practice 

 
• So, how do we go from theory to practice…? 

 
• Communication is often not synchronous, but  

not completely asynchronous either 
– There may be reasonable bounds on the message delays 
– Practical systems often use message passing. The machines wait for the 

response from another machine and abort/retry after time-out 
– Failures: It depends on the application/system what kind of failures have to 

be handled… 
 
 

• That is... 
– Real-world protocols also make assumptions about the system 
– These assumptions allow us to circumvent the lower bounds! 

 
 

 

Depends on the bounds 
on the message delays! 
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System 

 
• Storage System 

– Servers: 2...Millions 
– Store data and react to client 

request 
 

 
• Processes 

– Clients, often millions 
– Read and write/modify data 
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Consistency Models (Client View) 

 
• Interface that describes the system behavior (abstract away 

implementation details) 
• If clients read/write data, they expect the behavior to be the same as for 

a single storage cell. 
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Let‘s Formalize these Ideas 

 
• We have memory that supports 3 types of operations: 

– write(u := v): write value v to the memory location at address u 
– read(u): Read value stored at address u and return it 
– snapshot(): return a map that contains all address-value pairs 

 
• Each operation has a start-time Ts and return-time TR (time it returns to 

the invoking client). The duration is given by TR – Ts. 
 
 

 
 
 
 
 

 

start-time 

A X Y B 

read(u) 

write(u := 3) 

return-time 

replica 
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Motivation 

read(u) 

? 

write(u:=1) 

write(u:=2) 

write(u:=3) 

write(u:=4) 

write(u:=5) 

write(u:=6) 

write(u:=7) 

time 
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Executions 

 
• We look at executions E that define 

the (partial) order in which 
processes invoke operations. 
 

• Real-time partial order of an 
execution <r: 

– p <r q means that duration of 
operation p occurs entirely before 
duration of q (i.e., p returns before 
the invocation of q in real time). 
 

• Client partial order <c : 
– p <c q means p and q occur at the 

same client, and that p returns 
before q is invoked. 

 

A B 

Real time partial 
order <r  

A B 

Client partial 
order <c 
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Strong Consistency: Linearizability 

 
• A replicated system is called linearizable if it behaves exactly as a single-

site (unreplicated) system. 
 
 
 
 
 
 
 
 
 

 
 

 

Definition 
Execution E is linearizable if there exists a sequence H such that: 
 
1) H contains exactly the same operations as E, each paired 

with the return value received in E 
2) The total order of operations in H is compatible with the 

real-time partial order <r  
3) H is a legal history of the data type that is replicated 
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Example: Linearizable Execution 

A X Y B 

read(u1) 

write(u2 := 7) 

snapshot() 

5 

(u0:0, u1:5,  
u2:7, u3:0) 

write(u1 := 5) 

read(u2) 

0 

write(u3 := 2) 

Valid sequence H: 
 
1.) write(u1 := 5) 
2.) read(u1) → 5 
3.) read(u2) → 0 
4.) write(u2 := 7) 
5.) snapshot() →  

(u0: 0, u1: 5, u2:7, u3:0) 
6.) write(u3 := 2) 
 
For this example, this is the 
only valid H. In general there 
might be several sequences 
H that fullfil all required 
properties. 

Real time partial order <r  
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Strong Consistency: Sequential Consistency 

 
• Orders at different locations are disregarded if it cannot be determined by 

any observer within the system. 
 

• I.e., a system provides sequential consistency if every node of the system 
sees the (write) operations on the same memory address in the same 
order, although the order may be different from the order as defined by 
real time (as seen by a hypothetical external observer or global clock). 
 

 
 

Definition 
Execution E is sequentially consistent if there exists a sequence H such that: 
 
1) H contains exactly the same operations as E, each paired with the 

return value received in E 
2) The total order of operations in H is compatible with the client partial 

order <c  
3) H is a legal history of the data type that is replicated 
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Example: Sequentially Consistent 

A X Y B 

read(u1) 

snapshot() 

5 

(u0:0, u1:5,  
u2:7, u3:0) 

write(u1 := 5) 

read(u2) 

0 

write(u3 := 2) 

Real-time partial order requires write(3,2) 
to be before snapshot(), which contradicts 

the view in snapshot()! 

write(u2 := 7) 

Client partial order <c 

Valid sequence H: 
 
1.) write(u1 := 5) 
2.) read(u1) → 5 
3.) read(u2) → 0 
4.) write(u2 := 7) 
5.) snapshot() →  

(u0:0, u1:5, u2:7, u3:0) 
6.) write(u3 := 2) 
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Is Every Execution Sequentially Consistent? 

A X Y B 

write(u2 := 7) 

snapshotu0,u1() 

(u0:8, u1:0) 

write(u1 := 5) 

snapshotu2,u3() 

(u2:0, u3:2) 

write(u3 := 2) 

write(u0 := 8) 

write(u2 := 7) write(u1 := 5) 

write(u0 := 8) write(u3 := 2) 

Circular dependencies!  
 

I.e., there is no valid total order and thus above 
execution is not sequentially consistent 
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Sequential Consistency does not Compose 

A X Y B 

write(u2 := 7) 

snapshotu0,u1() 

(u0:8, u1:0) 

write(u1 := 5) 

snapshotu2,u3() 

(u2:0, u3:2) 

write(u3 := 2) 

write(u0 := 8) 

• If we only look at data items 0 
and 1, operations are 
sequentially consistent 
 

• If we only look at data items 2 
and 3, operation are also 
sequentially consistent 
 

• But, as we have seen before, 
the combination is not 
sequentially consistent 

Sequential consistency does not compose! 
 

(this is in contrast to linearizability) 
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Transactions 

 
• In order to achieve consistency, updates have to be atomic 
• A write has to be an atomic transaction 

– Updates are synchronized 
 

• Either all nodes (servers) commit a transaction or all abort 
• How do we handle transactions in asynchronous systems? 

– Unpredictable messages delays! 
• Moreover, any node may fail… 

– Recall that this problem cannot 
be solved in theory! 

 
 

Long delay 

Short delay 
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Two-Phase Commit (2PC) 

 
• A widely used protocol is the so-called two-phase commit protocol 
• The idea is simple: There is a coordinator that coordinates the transaction 

– All other nodes communicate only with the coordinator 
– The coordinator communicates the final decision 

 
Coordinator 
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Two-Phase Commit: Failures 

 
• Fail-stop model: We assume that a failed node does not re-emerge 
• Failures are detected (instantly) 

– E.g. time-outs are used in practical systems to detect failures 
• If the coordinator fails, a new coordinator takes over (instantly) 

– How can this be accomplished reliably? 
 

Coordinator New 
coordinator 
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Two-Phase Commit: Protocol 

 
• In the first phase, the coordinator asks if all nodes are ready to commit 
• In the second phase, the coordinator sends the decision (commit/abort) 

– The coordinator aborts if at least one node said no 

Coordinator 

ready 

ready 

ready 

ready 

yes 
yes 

yes no 

Coordinator 

abort abort 

abort abort 

ack ack 

ack ack 
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Two-Phase Commit: Protocol 

Phase 1: 
 
Coordinator sends ready to all nodes 
 
If a node receives ready from the coordinator: 
If it is ready to commit 
      Send yes to coordinator 
else 
      Send no to coordinator 
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Two-Phase Commit: Protocol 

Phase 2: 
 
If the coordinator receives only yes messages: 
      Send commit to all nodes 
else  
      Send abort to all nodes 
 
If a node receives commit from the coordinator: 
      Commit the transaction 
else  (abort received) 
      Abort the transaction 
Send ack to coordinator 
 
Once the coordinator received all ack messages: 
It completes the transaction by committing or aborting itself 
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Two-Phase Commit: Analysis 

 
• 2PC obviously works if there are no failures 
• If a node that is not the coordinator fails, it still works 

– If the node fails before sending yes/no, the coordinator can either ignore it or 
safely abort the transaction 

– If the node fails before sending ack, the coordinator can still commit/abort 
depending on the vote in the first phase 
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Two-Phase Commit: Analysis 

 
• What happens if the coordinator fails? 
• As we said before, this is (somehow) detected and a new coordinator 

takes over 
 

• How does the new coordinator proceed? 
– It must ask the other nodes if a node has already received a commit 
– A node that has received a commit replies yes,  

otherwise it sends no and promises not to accept 
a commit that may arrive from the old coordinator 

– If some node replied yes, the new 
coordinator broadcasts commit 

 
• This works if there is only one failure 
• Does 2PC still work with multiple failures…? 
 

This safety mechanism 
is not a part of 2PC… 



2/32 

Two-Phase Commit: Multiple Failures 

 
• As long as the coordinator is alive, multiple failures are no problem 

– The same arguments as for one failure apply 
• What if the coordinator and another node crashes? 

 
 
 
 
 
 
 
 
 
 

 The nodes cannot commit!  The nodes cannot abort! 
 

yes 

yes 

no 
abort 

Aborted! 

commit or 
abort??? 

commit or 
abort??? 

yes 

yes 

yes 
commit 

commit or 
abort??? 

commit or 
abort??? 

Committed! 
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Two-Phase Commit: Multiple Failures 

 
• What is the problem? 

– Some nodes may be ready to commit while others have already committed or 
aborted 

– If the coordinator crashes, the other nodes are not informed! 
• How can we solve this problem? 

The remaining 
nodes cannot make 

a decision! yes 

yes 

Yes/ no 

commit/ 
abort 

Committed/Aborted! 

…??? 

…??? 
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Three-Phase Commit 

 
• Solution: Add another phase to the protocol! 

– The new phase precedes the commit phase 
– The goal is to inform all nodes that all are ready to commit (or not) 
– At the end of this phase, every node knows whether or not all nodes want to 

commit before any node has actually committed or aborted! 
 
 
 
 

• This protocol is called the three-phase commit (3PC) protocol 

This solves the 
problem of 2PC! 
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Three-Phase Commit: Protocol 

 
• In the new (second) phase, the coordinator sends prepare (to commit) 

messages to all nodes  

Coordinator 

ready 

ready 

ready 

ready 

yes 
yes 

yes 

yes 

Coordinator 

commit 

commit 

commit 

commit 

ackC 
ackC 

ackC 

ackC 

Coordinator 

prepare 

prepare 

prepare 

prepare 

ack 
ack 

ack 

ack 

acknowledge 
commit 
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Three-Phase Commit: Protocol 

Phase 1: 
 
Coordinator sends ready to all nodes 
 
If a node receives ready from the coordinator: 
If it is ready to commit 
      Send yes to coordinator 
else 
      Send no to coordinator 

The first phase of 2PC 
and 3PC are identical! 
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Three-Phase Commit: Protocol 

Phase 2: 
 
If the coordinator receives only yes messages: 
      Send prepare to all nodes 
else  
      Send abort to all nodes 
 
If a node receives prepare from the coordinator: 
      Prepare to commit the transaction 
else   (abort received) 
      Abort the transaction 
Send ack to coordinator 

This is the new phase 
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Three-Phase Commit: Protocol 

Phase 3: 
 
Once the coordinator received all ack messages: 
If the coordinator sent abort in Phase 2 
      The coordinator aborts the transaction as well 
else  (it sent prepare) 
      Send commit to all nodes 
 
If a node receives commit from the coordinator: 
Commit the transaction 
Send ackCommit to coordinator 
 
Once the coordinator received all ackCommit messages: 
It completes the transaction by committing itself 
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Three-Phase Commit: Analysis 

 
• All non-faulty nodes either commit or abort 

– If the coordinator doesn’t fail, 3PC is correct because the coordinator lets all 
nodes either commit or abort 

– Termination can also be guaranteed: If some node fails before sending 
yes/no, the coordinator can safely abort. If some node fails after the 
coordinator sent prepare, the coordinator can still enforce a commit because 
all nodes must have sent yes 

– If only the coordinator fails, we again don’t have a problem because the new 
coordinator can restart the protocol 

– Assume that the coordinator and some other nodes failed and that some 
node committed. The coordinator must have received ack messages from all 
nodes  All nodes must have received a prepare message. The new 
coordinator can thus enforce a commit. If a node aborted, no node can have 
received a prepare message. Thus, the new coordinator can safely abort the 
transaction 
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Three-Phase Commit: Analysis 

 
• Although the 3PC protocol still works if multiple nodes fail, it still has 

severe shortcomings 
– 3PC still depends on a single coordinator. What if some but not all nodes 

assume that the coordinator failed? 
 The nodes first have to agree on whether the coordinator crashed or not! 
 
 
 

– Transient failures: What if a failed coordinator comes back to life? Suddenly, 
there is more than one coordinator! 

 
• Still, 3PC and 2PC are used successfully in practice 
• However, it would be nice to have a practical protocol that does not 

depend on a single coordinator 
– and that can handle temporary failures! 

In order to solve consensus, you 
first need to solve consensus… 
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Paxos 

 
• Historical note 

– In the 1980s, a fault-tolerant distributed file system called “Echo” was built 
– According to the developers, it achieves “consensus” despite any number of 

failures as long as a majority of nodes is alive 
– The steps of the algorithm are simple if there are no failures and quite 

complicated if there are failures 
– Leslie Lamport thought that it is impossible to provide guarantees in this 

model and tried to prove it 
– Instead of finding a proof, he found a much simpler algorithm that works: 

The Paxos algorithm 
 

• Paxos is an algorithm that does not rely on a coordinator 
– Communication is still asynchronous 
– All nodes may crash at any time and they may also recover 

 
fail-recover model 
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Paxos: Majority Sets 

 
• Paxos is a two-phase protocol, but more resilient than 2PC 
• Why is it more resilient? 

– There is no coordinator. A majority of the nodes is asked if a certain value can 
be accepted 

– A majority set is enough because the intersection of two majority sets is not 
empty  If a majority chooses one value, no majority can choose another 
value! 

Majority set 

Majority set 



2/43 

Paxos: Majority Sets 

 
• Majority sets are a good idea 
• But, what happens if several nodes compete for a majority? 

– Conflicts have to be resolved 
– Some nodes may have to change their decision 

No majority… 

No majority… 

No majority… 
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Paxos: Roles 

 
• Each node has one or more roles: 

 
• Proposer 

– A proposer is a node that proposes a certain value for acceptance 
– Of course, there can be any number of proposers at the same time 

• Acceptor 
– An acceptor is a node that receives a proposal from a proposer 
– An acceptor can either accept or reject a proposal 

• Learner 
– A learner is a node that is not involved in the decision process 
– The learners must learn the final result from the proposers/acceptors 

There are three roles 
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Paxos: Proposal 

 
• A proposal (x,n) consists of the proposed value x and a proposal number n 
• Whenever a proposer issues a new proposal, it chooses a larger (unique) 

proposal number 
• An acceptor accepts a proposal (x,n) if n is larger than any proposal 

number it has ever heard 
 
 

• An acceptor can accept any number of proposals 
– An accepted proposal may not necessarily be chosen 
– The value of a chosen proposal is the chosen value 

• Any number of proposals can be choosen 
– However, if two proposals (x,n) and (y,m) are chosen, 

then x = y 

Give preference to larger 
proposal numbers! 

Consensus: Only one 
value can be chosen!  
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Paxos: Prepare 

 
• Before a node sends propose(x,n), it sends prepare(x,n) 

– This message is used to indicate that the node wants to propose (x,n) 
• If n is larger than all received request numbers, an acceptor returns the 

accepted proposal (y,m) with the largest request number m 
– If it never accepted a proposal, the acceptor returns (Ø,0) 
– The proposer learns about accepted proposals! 

Note that m < n! 

Majority set 

prepare(x,n) 

prepare(x,n) 

prepare(x,n) 

prepare(x,n) 

Majority set 

acc(y,m) 

acc(z,l) 

acc(Ø,0) 

This is the first phase! 
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Paxos: Propose 

 
• If the proposer receives all replies, it sends a proposal 
• However, it only proposes its own value, if it only received acc(Ø,0), 

otherwise it adopts the value y in the proposal with the largest request 
number m 

– The proposal still contains its sequence number n, i.e., (y,n) is proposed 
• If the proposer receives all acknowledgements ack(y,n), the proposal is 

chosen 

This is the second phase! 

Majority set 

propose(y,n) 

propose(y,n) 

propose(y,n) 

propose(y,n) 

Majority set 

(y,n) is 
chosen! ack(y,n) 

ack(y,n) 

ack(y,n) 

ack(y,n) 
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Paxos: Algorithm of Proposer 

Proposer wants to propose (x,n): 
 
Send prepare(x,n) to a majority of the nodes 
if a majority of the nodes replies then 
      Let (y,m) be the received proposal with the largest request number 
      if m = 0 then (No acceptor ever accepted another proposal) 
            Send propose(x,n) to the same set of acceptors 
      else 
            Send propose(y,n) to the same set of acceptors 
 
      if a majority of the nodes replies with ack(x,n) (or ack(y,n)) 
            The proposal is chosen! 

After a time-out, the proposer gives 
up and may send a new proposal 

The value of the proposal 
is also chosen! 



2/49 

Paxos: Algorithm of Acceptor 

Initialize and store persistently: 
 
nmax := 0 
(xlast,nlast)  := (Ø,0) 
 
Acceptor receives prepare (x,n): 
 
if n > nmax then 
      nmax := n 
      Send acc(xlast,nlast) to the proposer 
 
Acceptor receives proposal (x,n): 
 
if n = nmax then 
      xlast := x 
      nlast := n 
      Send ack(x,n) to the proposer 

Last accepted proposal 

Largest request number ever received 

Why persistently? 
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Paxos: Spreading the Decision 

 
• After a proposal is chosen, only the proposer knows about it! 
• How do the other nodes get informed? 
• The proposer could inform all nodes directly 

– Only n-1 messages are required 
– If the proposer fails, the others are not informed 

(directly)… 
• The acceptors could broadcast every time they 

accept a proposal 
– Much more fault-tolerant 
– Many accepted proposals may not be chosen… 
– Moreover, choosing a value costs O(n2) messages 

without failures! 
• Something in the middle? 

– The proposer informs b nodes and lets them 
broadcast the decision 

(x,n) is 
chosen! 

Trade-off: fault-tolerance vs. message complexity 

Accepted 
(x,n)! 

(x,n)  
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Paxos: Agreement 

 
 
 
 

Proof: 
• Assume that there are proposals (y,n’) for which n’ > n and x ≠ y.  

Consider the proposal with the smallest proposal number n’ 
• Consider the non-empty intersection S of the two sets of nodes that 

function as the acceptors for the two proposals 
• Proposal (x,n) has been accepted  Since n’ > n, the nodes in S must have 

received prepare(y,n’) after (x,n) has been accepted 
• This implies that the proposer of (y,n’) would also propose the value x 

unless another acceptor has accepted a proposal (z,n*), z ≠ x and n < n* < 
n’. However, this means that some node must have proposed (z,n*), a 
contradiction because n* < n’ and we said that n’ is the smallest proposal 
number! 

Lemma 
If a proposal (x,n) is chosen, then for every issued 
proposal (y,n’) for which n’ > n it holds that x = y 
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Paxos: Theorem 

 
 
 
 
 

Proof: 
• Once a proposal (x,n) is chosen, each proposal (y,n’) that is sent 

afterwards has the same proposal value, i.e., x = y according to the lemma 
on the previous slide 

• Since every subsequent proposal has the same value x, every proposal 
that is accepted after (x,n) has been chosen has the same value x 

• Since no other value than x is accepted, no other value can be chosen! 

Theorem 
If a value is chosen, all nodes choose this value 
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Paxos: Wait a Minute… 

 
• Paxos is great! 
• It is a simple, deterministic algorithm that works in 

asynchronous systems and tolerates f < n/2 failures 
 

• Is this really possible…? 
 
 
 
 
 
 
 

• Does Paxos contradict this lower bound…? 

Theorem 
A deterministic algorithm cannot guarantee 
consensus in asynchronous systems even if 

there is just one faulty node 
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Paxos: No Liveness Guarantee 

 
• The answer is no! Paxos only guarantees that if a value is chosen, the other 

nodes can only choose the same value 
• It does not guarantee that a value is chosen! 

prepare(x,1) 

acc(Ø,0) 

propose(x,1) 

prepare(y,2) 

acc(Ø,0) 

propose(y,2) 

prepare(x,3) 

acc(Ø,0) 

prepare(y,4) 

acc(Ø,0) 

Time-out! 

Time-out! 

time 
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Paxos: Agreement vs. Termination 

 
• In asynchronous systems, a deterministic consensus algorithm cannot have 

both, guaranteed termination and correctness 
• Paxos is always correct. Consequently, it cannot guarantee that the 

protocol terminates in a certain number of rounds 
 
 

 
 
• Although Paxos may not terminate in theory, it is quite efficient in practice 

using a few optimizations 

Termination is sacrificed 
for correctness… 

How can Paxos 
be optimized? 
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Paxos in Practice 

 
• There are ways to optimize Paxos by dealing with some practical issues 

– For example, the nodes may wait for a long time until they decide to try to 
submit a new proposal 

– A simple solution: The acceptors send NAK if they do not accept a prepare 
message or a proposal. A node can then abort immediately 

– Note that this optimization increases the message complexity… 
 

• Paxos is indeed used in practical systems! 
– Yahoo!’s ZooKeeper: A management service for large distributed systems uses a 

variation of Paxos to achieve consensus 
– Google’s Chubby: A distributed lock service library. Chubby stores lock 

information in a replicated database to achieve high availability. The database 
is implemented on top of a fault-tolerant log layer based on Paxos 
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Paxos: Fun Facts 

 
• Why is the algorithm called Paxos? 
• Leslie Lamport described the algorithm as the solution to a 

problem of the parliament on a fictitious Greek island called Paxos 
• Many readers were so distracted by the description of the 

activities of the legislators, they did not understand the meaning 
and purpose of the algorithm. The paper was rejected 

• Leslie Lamport refused to rewrite the paper. He later wrote that he 
 “was quite annoyed at how humorless everyone working in the 

field seemed to be” 
• After a few years, some people started to understand the 

importance of the algorithm 
• After eight years, Leslie Lamport submitted the paper again, 

basically unaltered. It got accepted! 
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Quorum 

 
Paxos used Majority sets: Can this be generalized? 
 

Yes: It’s called Quorum 
 
 
 
• In law, a quorum is the minimum number of members of a deliberative 

body necessary to conduct the business of the group. 
• In our case: substitute “the minimum number of members of a 

deliberative body” with “any subset of servers of a distributed system” 
 
A Quorum does not automatically need to be a majority. 
What else can you imagine? What are reasonable objectives? 
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Quorum: Primary Copy vs. Majority 

 
 

 
 

or ? 
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Quorum: Primary Copy vs. Majority 

 
 

 
 Singleton Majority 

How many servers need to be contacted? (Work) 1 > 𝑛 2⁄  

What’s the load of the busiest server? (Load) 100% ≈ 50% 

How many server failures can be tolerated? (Resilience) 0 < 𝑛 2⁄  
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Definition: Quorum System 

Definition 
Minimal Quorum System  
 
A quorum system Q is called minimal if   ∀ 𝑄,𝑄′ ∈ Q:𝑄 ⊄ 𝑄′ 

Definition 
Quorum System  
 
Let  𝑃 = {𝑃1, … ,𝑃𝑛} be a set of servers. 
A quorum system Q ⊂ 2𝑃 is a set of subsets of 𝑃 such that every 
two subsets intersect. Each Q ∈ Q is called a quorum. 
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Definition: Load 

 
 

 
 
 
 
 
 

Definition 
Load  
 
The load induced by access strategy 𝑊 on a server 𝑃𝑖 is: 

𝑙𝑊(𝑖) = � 𝑃𝑊
𝑄∈Q; 𝑃𝑖∈𝑄

𝑄  

The load induced by 𝑊 on  a quorum system Q  is the maximal load induced by 𝑊  
on any server in Q . 

𝐿𝑊 Q = 𝑚𝑚𝑚
∀𝑃𝑖

𝑙𝑊(𝑖)  

The system load of Q is  
𝐿 Q = 𝑚𝑖𝑛

∀𝑊
𝐿𝑊(Q)  

Definition 
Access Strategy  
 
An access strategy W is a random variable on a quorum system Q, 
i.e. ∑ 𝑃𝑊𝑄∈Q 𝑄 = 1 
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Quorum:  Grid 

 
 

 

• Work: 2 𝑛  − 1 
 

 

• Load: 2 𝑛 −1
𝑛

  

 

𝑛 

𝑛 
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Definitions: Fault Tolerance 

 
 
 

 
 
 
 
 

 
 

Definition 
Resilience 
 
The resilience 𝑅(Q) of a quorum system is the largest 𝑓 such that 
for all sets 𝐹 ⊂ 𝑃, 𝐹 = 𝑓, there is at least one quorum 𝑄 ∈
Q with 𝐹 ∩ 𝑄 =  ∅ 

Definition 
Failure Probability 
 
Assume that each server fails independently with probability 𝑝. 
The failure probability of a quorum system Q is the probability 
that no quorum 𝑄 ∈ Q is available. 
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Quorum:  B-Grid 

 
• Suppose  𝑛 = 𝑑𝑑𝑑 and arrange the 

elements in a grid with 𝑑 columns 
and 𝑑 ⋅ 𝑑 rows. Call every group of 𝑑 
rows a band and call 𝑑 elements in a 
column restricted to a band a mini-
column. A quorum consists of one 
mini-column in every band and one 
element from each mini-column of 
one band; thus, every quorum has 
𝑑 + 𝑑𝑑 − 1 elements 
 

• Resilience? 

𝑑 ⋅ 𝑑 

d 

mini-column 

band 
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Quorum Systems: Overview 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
   *Assuming p constant but significantly less than ½. 
    **B-Grid: We set 𝑑 = 𝑛, 𝑑 = log𝑛 

Singleton Majority Grid  B-Grid** 

Work 1 > 𝑛/2 𝜃( 𝑛) 𝜃( 𝑛) 

Load 1 1/2 𝜃(1/ 𝑛) 𝜃(1/ 𝑛) 

Resilience 0 < 𝑛/2 𝑛  − 1 𝜃( 𝑛) 

Failure Prob.*  𝑝 → 0 → 1 → 0 
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Chubby 

 
• Chubby is a coarse-grained distributed lock service  

– Coarse-grained: Locks are held for hours or even days 
 

• Chubby allows clients to synchronize activities 
– E.g., synchronize access through a leader in a distributed system 
– The leader is elected using Chubby: The node that gets the lock for this 

service becomes the leader! 
 

• Design goals are high availability and reliability 
– High performance is not a major issue 

 
• Chubby is used in many tools, services etc. at Google 

– Google File System (GFS) 
– BigTable (distributed database) 
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Chubby: System Structure 

 
• A Chubby cell typically consists of 5 servers 

– One server is the master, the others are replicas 
– The clients only communicate with the master 
– Clients find the master by sending master location requests to some replicas 

listed in the DNS 
 

Replica 
Master 

Client 

Chubby cell 

DNS 
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Chubby: System Structure 

 
• The master handles all read accesses 
• The master also handles writes 

– Copies of the updates are sent to the replicas 
– Majority of replicas must acknowledge receipt of update before master writes 

its own value and updates the official database 

Update! 

update 
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Chubby: Master Election 

 
• The master remains the master for the duration of the master lease 

– Before the lease expires, the master can renew it (and remain the master) 
– It is guaranteed that no new master is elected before the lease expires 
– However, a new master is elected as soon as the lease expires 
– This ensures that the system does not freeze  (for a long time) if the master 

crashed 
 

• How do the servers in the Chubby cell agree on a master? 
• They run (a variant of) the Paxos algorithm! 
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Chubby: Locks 

 
• Locks are advisory (not mandatory) 

– As usual, locks are mutually exclusive 
– However, data can be read without the lock! 
– Advisory locks are more efficient than mandatory locks (where any access 

requires the lock): Most accesses are reads! If a mandatory lock is used and 
the lock holder crashes, then all reads are stalled until the situation is 
resolved 

– Write permission to a resource is required to obtain a lock 
 

 Advisory:   Mandatory: 

service 

lock 
holder read 

read read 

service 

lock 
holder 

Chubby cell 
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Chubby: Sessions 

 
• What happens if the lock holder crashes? 
• Client initially contacts master to establish a session 

– Session: Relationship between Chubby cell and Chubby client 
• Each session has an associated lease 

– The master can extend the lease, but it may not revoke the lease  
– Longer lease times if the load is high 

• Periodic KeepAlive (KA) handshake to maintain relationship 
– The master does not respond until the client’s previous lease is close to 

expiring 
– Then it responds with the duration of the new lease 
– The client reacts immediately and issues the next KA 

• Ending a session 
– The client terminates the session explicitly 
– or the lease expires 

master 

client 

lease 1 

lease 1 

lease 2 

lease 2 

KA KA reply 



2/73 

Chubby: Lease Timeout 

 
• The client maintains a local lease timeout 

– The client knows (roughly) when it has to hear from the master again 
• If the local lease expires, the session is in jeopardy 
• As soon as a session is in jeopardy, the grace period (45s by default) starts 

– If there is a successful KeepAlive exchange before the end of the grace period, 
the session is saved! 

– Otherwise, the session expired 
 

• This might happen if the master crashed… 
 

Time when 
lease expires 
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Chubby: Master Failure 

 
• The grace period can save sessions 

 
 
 
 
 
 
 
 
 

• The client finds the new master using a master location request 
• Its first KA to the new master is denied (*) because the new master has a 

new epoch number (sometimes called view number) 
• The next KA succeeds with the new number 

Old master New master 

client 

lease 1 

lease 1 

lease 2 

lease 2 grace period 

jeopardy safe 

lease 3 

lease 3 

KA KA KA KA reply * reply KA 
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Chubby: Master Failure 

 
• A master failure is detected once the master lease expires 
• A new master is elected, which tries to resume exactly where the old 

master left off 
– Read data that the former master wrote to disk (this data is also replicated) 
– Obtain state from clients 

• Actions of the new master 
1. It picks a new epoch number 
– It only replies to master location requests 
2. It rebuilds the data structures of the old master 
– Now it also accepts KeepAlives 
3. It informs all clients about failure  Clients flush cache 
– All operations can proceed 

We omit 
caching in 

this lecture!  



2/76 

Chubby: Locks Reloaded 

 
• What if a lock holder crashes and its (write) request is still in transit? 

– This write may undo an operation of the next lock holder! 
 
 
 
 

• Heuristic I: Sequencer 
– Add a sequencer (which describes the state of the lock) to the access requests 
– The sequencer is a bit string that contains the name of lock, the mode 

(exclusive/shared), and the lock generation number 
– The client passes the sequencer to server. The server is expected to check if 

the sequencer is still valid and has the appropriate mode 
• Heuristic II: Delay access 

– If a lock holder crashed, Chubby blocks the lock for a period called the lock 
delay 

service old lock 
holder 

new lock 
holder 

x:=10 x:=7 



2/77 

Chubby: Replica Replacement 

 
• What happens when a replica crashes? 

– If it does not recover for a few hours, a replacement system selects a fresh 
machine from a pool of machines 

– Subsequently, the DNS tables are updated by replacing the IP address of the 
failed replica with the new one 

– The master polls the DNS periodically and eventually notices the change 

Chubby cell 

Replacement 
system 

free pool 

DNS 
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Chubby: Performance 

 
• According to Chubby… 

– Chubby performs quite well 
• 90K+ clients can communicate with a single Chubby master (2 CPUs) 
• System increases lease times from 12s up to 60s under heavy load 
• Clients cache virtually everything 
• Only little state has to be stored 

– All data is held in RAM (but also persistently stored on disk) 
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Practical Byzantine Fault-Tolerance 

 
• So far, we have only looked at systems that deal with simple (crash) failures 
• We know that there are other kind of failures: 

Crash / Fail-stop 
Omission of 
messages 

Arbitrary failures,  
authenticated messages Arbitrary failures 
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Practical Byzantine Fault-Tolerance 

 
• Is it reasonable to consider Byzantine behavior in practical systems? 
• There are several reasons why clients/servers may behave “arbitrarily” 

– Malfunctioning hardware 
– Buggy software 
– Malicious attacks 

• Can we have a practical and efficient system that tolerates Byzantine 
behavior…? 

– We again need to solve consensus… 
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PBFT 

 
• We are now going to study the Practical Byzantine Fault-Tolerant (PBFT) 

system 
• The system consists of clients that read/write data stored at n servers 

 
• Goal 

– The system can be used to implement any deterministic replicated service 
with a state and some operations 

– Provide reliability and availability 
 

• Model 
– Communication is asynchronous, but message delays are bounded 
– Messages may be lost, duplicated or may arrive out of order 
– Messages can be authenticated using digital signatures 

(in order to prevent spoofing, replay, impersonation) 
– At most f < n/3 of the servers are Byzantine 
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PBFT: Order of Operations 

 
• State replication (repetition): If all servers start in the same state, all 

operations are deterministic, and all operations are executed in the same 
order, then all servers remain in the same state! 

• Variable message delays may be a problem: 
… … … 

Servers 

Clients 

A A B B B A 
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PBFT: Order of Operations 

 
• If messages are lost, some servers may not receive all updates…  

… A … A B … B 

B 

Servers 

Clients 

… B 
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PBFT: Basic Idea 

 
• Such problems can be solved by using a coordinator 
• One server is the primary 

– The clients send signed commands to the primary 
– The primary assigns sequence numbers to the commands 
– These sequence numbers impose an order on the commands 

• The other servers are backups 
– The primary forwards commands to the other servers 
– Information about commands is replicated at a quorum of backups 

 
 

 
 

• Note that we assume in the following that there are 
exactly n = 3f+1 servers! 

PBFT is not as 
decentralized 

as Paxos! 

Quorum…? 
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Byzantine Quorums 

 
 

Now, a quorum is any subset of the servers of size at least 2f+1 
– The intersection between any two quorums contains at least one correct  

(not Byzantine) server 

Quorum 1 Quorum 2 
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PBFT: Main Algorithm 

 
• PBFT takes 5 rounds of communication 
• In the first round, the client sends the command op to the primary 
• The following three rounds are 

– Pre-prepare 
– Prepare 
– Propose 

• In the fifth round, the client receives replies from the servers 
– If f+1 (authenticated) replies are the same, the result is accepted 
– Since there are only f Byzantine servers, at least one correct server supports 

the result 
 

• The algorithm is somewhat similar to Paxos… 
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PBFT: Paxos 

 
• In Paxos, there is only a prepare and a propose phase 
• The primary is the node issuing the proposal 
• In the response phase, the clients learn the final result 

Request Prepare Propose Response 

Client 

Primary 

Backup 

Backup 

Backup 
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PBFT: Algorithm 

 
• PBFT takes 5 rounds of communication 
• The main parts are the three rounds pre-prepare, prepare, and commit 

Client 

Primary 

Backup 

Backup 

Backup 

Request Prepare Commit Response Pre-Prepare 
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PBFT: Request Phase 

 
• In the first round, the client sends the command op to the primary 
• It also sends a timestamp ts, a client identifier c-id and a signature c-sig 

Client 

Primary 

Backup 

Backup 

Backup 

Request Prepare Response Pre-Prepare 

[op, ts, c-id, c-sig] 

Commit 
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PBFT: Request Phase 

 
• Why adding a timestamp? 

– The timestamp ensures that a command is recorded/executed exactly once 
 

• Why adding a signature? 
– It is not possible for another client (or a Byzantine server) to issue commands 

that are accepted as commands from client c 
– The system also performs access control: If a client c is allowed to write a 

variable x but c’ is not, c’ cannot issue a write command by pretending to be 
client c! 
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PBFT: Pre-Prepare Phase 

 
• In the second round, the primary multicasts m = [op, ts, c-id, c-sig] to the 

backups, including the view number vn, the assigned sequence number sn, 
the message digest D(m) of m, and its own signature p-sig 

Client 

Primary 

Backup 

Backup 

Backup 

[PP, vn, sn, D(m), p-sig, m] 

pre-prepare message 

Request Prepare Response Pre-Prepare Commit 
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PBFT: Pre-Prepare Phase 

 
• The sequence numbers are used to order the commands and the 

signature is used to verify the authenticity as before 
 

• Why adding the message digest of the client’s message? 
– The primary signs only [PP, vn, sn, D(m)]. This is more efficient! 
 

• What is a view? 
– A view is a configuration of the system. Here we assume that the system 

comprises the same set of servers, one of which is the primary 
– I.e., the primary determines the view: Two views are different if a different 

server is the primary 
– A view number identifies a view 
– The primary in view vn is the server whose identifier is vn mod n 
– Ideally, all servers are (always) in the same view 
– A view change occurs if a different primary is elected 

More on 
view changes 

later… 
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PBFT: Pre-Prepare Phase 

 
• A backup accepts a pre-prepare message if 

– the signatures are correct 
– D(m) is the digest of m = [op, ts, cid, c-sig]  
– it is in view vn 
– It has not accepted a pre-prepare message for view number vn and sequence 

number sn containing a different digest 
– the sequence number is between a low water mark h and a high water mark H 
– The last condition prevents a faulty primary from exhausting the space of 

sequence numbers 
 
• Each accepted pre-prepare message is stored in the local log 

 



2/94 

PBFT: Prepare Phase 

 
• If a backup b accepts the pre-prepare message, it enters the prepare 

phase and multicasts [P, vn ,sn, D(m), b-id, b-sig] to all other replicas and 
stores this prepare message in its log 

Client 

Primary 

Backup 

Backup 

Backup 

Request Prepare Commit Response Pre-Prepare 

[P, vn, sn, D(m), b-id, b-sig] 

prepare message 
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PBFT: Prepare Phase 

 
• A replica (including the primary) accepts a prepare message if 

– the signatures are correct 
– it is in view vn 
– the sequence number is between a low water mark h and a high water mark H 

 
• Each accepted prepare message is also stored in the local log  
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PBFT: Commit Phase 

 
• If a backup b has message m, an accepted pre-prepare message, and 2f 

accepted prepare messages from different replicas in its log, it multicasts 
[C, vn, sn, D(m), b-id, b-sig] to all other replicas and stores this commit 
message 

Client 

Primary 

Backup 

Backup 

Backup 

[C, vn, sn, D(m), b-id, b-sig] 

commit message 

Request Prepare Commit Response Pre-Prepare 
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PBFT: Commit Phase 

 
• A replica (including the primary) accepts a commit message if 

– the signatures are correct 
– it is in view vn 
– the sequence number is between a low water mark h and a high water mark H 

 
• Each accepted commit message is also stored in the local log 
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PBFT: Response Phase 

 
• If a backup b has accepted 2f+1 commit messages, it performs op 

(“commits”) and sends a reply to the client 

Client 

Primary 

Backup 

Backup 

Backup 

reply message 

vn, ts, c-id, reply, b-sig] 

Request Prepare Commit Response Pre-Prepare 
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PBFT: Garbage Collection 

 
• The servers store all messages in their log 
• In order to discard messages in the log, the servers create checkpoints 

(snapshots of the state) every once in a while 
• A checkpoint contains the 2f+1 signed commit messages for the 

committed commands in the log 
• The checkpoint is multicast to all other servers 
• If a server receives 2f+1 matching checkpoint messages, the checkpoint 

becomes stable and any command that preceded the commands in the 
checkpoint are discarded 

• Note that the checkpoints are also used to set the low water mark h 
– to the sequence number of the last stable checkpoint 

 and the high water mark H 
– to a “sufficiently large” value 
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PBFT: Correct Primary 

 
• If the primary is correct, the algorithm works 

– All 2f+1 correct nodes receive pre-prepare messages and send prepare 
messages 

– All 2f+1 correct nodes receive 2f+1 prepare messages and send commit 
messages 

– All 2f+1 correct nodes receive 2f+1 commit messages, commit, and send a 
reply to the client 

– The client accepts the result 

Client 

Primary 

Backup 

Backup 

Backup 

Request Prepare Commit Response Pre-Prepare 
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PBFT: No Replies 

 
• What happens if the client does not receive replies? 

– Because the command message has been lost 
– Because the primary is Byzantine and did not forward it 

• After a time-out, the client multicasts the command to all servers 
– A server that has already committed the result sends it again 
– A server that is still processing it ignores it 
– A server that has not received the pre-prepare message forwards the 

command to the primary 
– If the server does not receive the pre-prepare message in return after a 

certain time, it concludes that the primary is faulty/Byzantine 
and sends a prepare message anyway 

This is how a failure of the 
primary is detected! 
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PBFT: View Change 

 
• If a server suspects that the primary is faulty 

– it stops accepting messages except checkpoint, view change and new view 
messages 

– it sends a view change message containing the identifier i = vn+1 mod n of the 
next primary and also a certificate for each command for which it accepted 
2f+1 prepare messages 

– A certificate simply contains the 2f+1 accepted signatures 
 

 
• When server i receives 2f view change messages from other servers, it 

broadcasts a new view message containing the signed view change 
• The servers verify the signature and accept the view change! 

 
• The new primary issues pre-prepare messages with the new view number 

for all commands with a correct certificate 

The next primary! 
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PBFT: Ordered Commands 

 
• Commands are totally ordered using the view numbers and the sequence 

numbers 
• We must ensure that a certain (vn,sn) pair is always associated with a 

unique command m! 
 

• If a correct server committed [m, vn, sn], then no other correct server can 
commit [m’, vn, sn] for any m≠ m’ s.t. D(m) ≠ D(m’) 

– If a correct server committed, it accepted a set of 2f+1 authenticated commit 
messages 

– The intersection between two such sets contains at least f+1 authenticated 
commit messages 

– There is at least one correct server in the intersection 
– A correct server does not issue (pre-)prepare messages with the same vn and 

sn for different m! 
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PBFT: Correctness 

 
 
 

 
 

 
Proof: 
• A client only accepts a result if it receives f+1 authenticated messages 

with the same result 
• At least one correct server must have committed this result 
• As we argued on the previous slide, no other correct server can commit a 

different result 

Theorem 
If a client accepts a result, no correct server 

commits a different result 
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PBFT: Liveness 

 
 
 
 
 
 

Proof: 
• The primary is correct 

– As we argued before, the algorithm terminates after 5 rounds if no messages 
are lost 

– Message loss is handled by retransmitting after certain time-outs 
– Assuming that messages arrive eventually, the algorithm also terminates 

eventually 

Theorem 
PBFT terminates eventually 
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PBFT: Liveness 

 
 
 
 
 
 

Proof continued: 
• The primary is Byzantine 

– If the client does not accept an answer in a certain period of time, it sends its 
command to all servers 

– In this case, the system behaves as if the primary is correct and the algorithm 
terminates eventually! 
 

• Thus, the Byzantine primary cannot delay the command indefinitely. As 
we saw before, if the algorithm terminates, the result is correct! 

– i.e., at least one correct server committed this result 
 

Theorem 
PBFT terminates eventually 
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PBFT: Evaluation 

 
• The Andrew benchmark emulates a software development workload 
• It has 5 phases: 

 
1. Create subdirectories recursively 
2. Copy a source tree 
3. Examine the status of all the files in the tree without examining the data 
4. Examine every byte in all the files 
5. Compile and link the files 

 
•  It is used to compare 3 systems 

– BFS (PBFT) and 4 replicas and BFS-nr (PBFT without replication)  
– BFS (PBFT) and NFS-std (network file system) 

 
• Measured normal-case behavior (i.e. no view changes) in an isolated 

network 
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PBFT: Evaluation 

 
 

 
• Most operations in NFS V2 are not 

read-only (r/o)  
– E.g., read and lookup modify the 

time-last-accessed attribute 
• A second version of PBFT has been 

tested in which lookups are read-only 
 

• Normal (strict) PBFT is only 26% slower 
than PBFT without replication 
 Replication does not cost too much! 
 

• Normal (strict) PBFT is only 3% slower than 
NFS-std, and PBFT with read-only lookups 
is even 2% faster! 

Times are in seconds 
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PBFT: Discussion 

 
• PBFT guarantees that the commands are totally ordered 
• If a client accepts a result, it knows that at least one correct server 

supports this result 
 

• Disadvantages: 
• Commit not at all correct servers 

– It is possible that only one correct server commits the command 
– We know that f other correct servers have sent commit, but they may only 

receive f+1 commits and therefore do not commit themselves… 
• Byzantine primary can slow down the system 

– Ignore the initial command 
– Send pre-prepare always after the other servers forwarded the command 
– No correct server will force a view change! 
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Beating the Lower Bounds… 

 
• We know several crucial impossibility results and lower bounds 

– No deterministic algorithm can achieve consensus 
in asynchronous systems even if only one node may crash 

– Any deterministic algorithm for synchronous systems 
that tolerates f crash failures takes at least f+1 rounds 
 

• Yet we have just seen a deterministic algorithm/system that 
– achieves consensus in asynchronous systems and that 

tolerates f < n/3 Byzantine failures 
– The algorithm only takes five rounds…? 

 
• So, why does the algorithm work…? 
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Beating the Lower Bounds… 

 
• So, why does the algorithm work…? 

 
• It is not really an asynchronous system  

– There are bounds on the message delays 
– This is almost a synchronous system… 

• We used authenticated messages 
– It can be verified if a server really sent a certain message 

• The algorithm takes more than 5 rounds in the worst case 
– It takes more than f rounds! 

 
 

Messages do not just 
“arrive eventually” 

Why? 
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Zyzzyva 

 
• Zyzzyva is another BFT protocol 
• Idea 

– The protocol should be very efficient if there are no failures 
– The clients speculatively execute the command without going through an 

agreement protocol! 
 

• Problem 
– States of correct servers may diverge 
– Clients may receive diverging/conflicting responses 

• Solution 
– Clients detect inconsistencies in the replies and help the correct servers to 

converge to a single total ordering of requests 
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Zyzzyva 

 
• Normal operation: Speculative execution! 
• Case 1: All 3f+1 report the same result 

Client 

Primary 

Backup 

Backup 

Backup 

Execute! 

Execute! 

Execute! 

Execute! 

Everything’s 
ok! 
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Zyzzyva 

 
• Case 2: Between 2f+1 and 3f results are the same 
• The client broadcasts a commit certificate containing the 2f+1 results 
• The client commits upon receiving 2f+1 replies  

Client 

Primary 

Backup 

Backup 

Faulty 
Backup 

Execute! 

Execute! 

Execute! 

There was a problem, 
but it’s fine now… 

commit certificate 
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Zyzzyva 

 
• Case 3: Less than 2f+1 replies are the same 
• The client broadcasts its request to all servers 
• This step circumvents a faulty primary  

Client 

Faulty 
Primary 

Backup 

Backup 

Backup 

Execute! 

Let’s try again! 

request 

Execute! 

Execute! 
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Zyzzyva 

 
• Case 4: The client receives results that indicate an inconsistent ordering 

by the primary 
• The client can generate a proof 

and append it to a view change message! 

Client 

Primary 

Backup 

Backup 

Backup 

Execute! 

Execute! 

Execute! 

Execute! 

The primary 
messed up… 

view change 
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Zyzzyva: Evaluation 

 
• Zyzzyva outperforms PBFT because it normally takes only 3 rounds! 
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How to make sites responsive? 
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Goals of Replication 

 
• Fault-Tolerance 

– That’s what we have been looking at so far... 
– Databases 
– We want to have a system that looks like a 

single node, but can tolerate node failures, etc. 
– Consistency is important („better fail the whole 

system than giving up consistency!“) 
 

• Performance 
– Single server cannot cope with millions of client 

requests per second 
– Large systems use replication to distribute load 
– Availability is important (that’s a major reason 

why we have replicated the system...) 
– Can we relax the notion of consistency? 
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Example: Bookstore 

 
 
What should the system provide? 
 
• Consistency 

For each user the system behaves reliably 
 

• Availability 
If a user clicks on a book in order to put it in his 
shopping cart, the user does not have to wait for the 
system to respond. 
 

• Partition Tolerance 
If the European and the American datacenter lose 
contact, the system should still operate. 

 
How would you do that? 

 

 
Consider a bookstore that sells its books over the world wide web: 
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Theorem 

CAP-Theorem 

 
 
 
 
 

 

It is impossible for a distributed computer system to simultaneously 
provide Consistency, Availability and Partition Tolerance.  

A distributed system can satisfy any two of these guarantees at the 
same time but not all three. 
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CAP-Theorem: Proof 

 
 
 
 
 
 
 
 

 
• N1 and N2 are networks which both share a piece of data v.  

 
• Algorithm A writes data to v and algorithm B reads data from v. 

 
• If a partition between N1 and N2 occurs, there is no way to ensure consistency and 

availability:  Either A and B have to wait for each other before finishing (so 
availability is not guaranteed) or inconsistencies will occur. 

 
 
 
 
 
 
 
 
 



2/123 

CAP-Theorem: Consequences 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Again, what would you prefer? 

Partition 

Drop Consistency 
Accept that things will become 
„Eventually consistent“ 
(e.g. bookstore: If two orders for 
the same book were received, 
one of the clients receives a 
back-order) 

Drop Availability 
Wait until data is consistent and 
therefore remain unavailable 
during that time. 
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• Network failure in the WAN 

CAP-Theorem: Criticism 

 
 
 
 
 

 
 

• Application Errors 
• Repeatable DBMS errors 
• A disaster (local cluster wiped out) 

CAP-Theorem does not apply 

• Unrepeatable DBMS errors 
• Operating system errors 
• Hardware failure in local cluster 
• A network partition in a local cluster 

Mostly cause a single node to fail 
(can be seen as a degenerated case 

of a network partition) 
 

This is easily survived by lots of 
algorithms 

Very rare! 

Conclusion: Better giving up availability than sacrificing consistency 
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• Basically Available 
• Soft State 
• Eventually consistent 

 
BASE is a counter concept to ACID. 
The system may be in an inconsistent 
state, but will eventually become 
consistent. 

ACID and BASE 

 
 

• Atomicity: All or Nothing: Either a 
transaction is processed in its 
entirety or not at all 
 

• Consistency: The database remains 
in a consistent state 
 

• Isolation: Data from transactions 
that are not yet completed cannot be 
read by other transactions  
 

• Durability: If a transaction was 
successful it stays in the system 
(even if system failures occur) 

ACID  BASE 
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ACID vs. BASE 

 
 

• Strong 
consistency 

• Pessimistic 
• Focus on commit 
• Isolation 
• Difficult schema 

evolution 

 
 
• Weak consistency 
• Optimistic 
• Focus on 

availability 
• Best effort 
• Flexible schema 

evolution 
• Approximate 

answers okay 
• Faster 
• Simpler? 

ACID  BASE 
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Consistency Models (Client View) 

• Interface that describes the  
system behavior 
 

• Recall: Strong consistency 
– After an update of process A completes, any subsequent access (by A, B, C, 

etc.) will return the updated value. 
 

• Weak consistency 
– Goal: Guarantee availability and some „reasonable amount“ of consistency! 
– System does not guarantee that subsequent accesses will return the updated 

value.  
 

 
 
 
 

What kind of guarantees would you definitely expect  
from a real-world storage system? 



2/130 



2/131 

Examples of Guarantees We Might Not Want to Sacrifice... 

 
• If I write something to the storage, I 

want to see the result on a subsequent 
read. 
 
 

• If I perform two read operations on the 
same variable, the value returned at 
the second read should be at least as 
new as the value returned by the first 
read. 
 

• Known data-dependencies should be 
reflected by the values read from the 
storage system. 

? 
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Weak Consistency 

 
• A considerable performance gain can result if messages are transmitted 

independently, and applied to each replica whenever they arrive.  
– But: Clients can see inconsistencies that would never happen with 

unreplicated data. 
 

 

A X Y B 

write(u2:=7) 

snapshot() 

(u0:0, u1:0, u2:7, u3:2) 

write(u1:=5) 

write(u3:=2) 

snapshot() 

(u0:0, u1:5, u2:0, u3:0) 

This execution is NOT 
sequentially consistent 
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Weak Consistency: Eventual Consistency 

 
 
 
 
 
 

• Special form of weak consistency 
 

• Allows for „disconnected operation“ 
 

• Requires some conflict resolution 
mechanism 

– After conflict resolution all clients see the 
same order of operations  up to a certain 
point in time („agreed past“). 

– Conflict resolution can occur on the server-
side or on the client-side 

 

Definition 
Eventual Consistency 
 
If no new updates are made to the data object, eventually all accesses 
will return the last updated value. 
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Weak Consistency: More Concepts 

Definition 
Monotonic Read Consistency 
 
If a process has seen a particular value for the object, any subsequent 
accesses will never return any previous values. 

Definition 
Monotonic Write Consistency 
 
A write operation by a process on a data item u is completed before any 
successive write operation on u by the same process (i.e. system 
guarantees to serialize writes by the same process). 

Definition 
Read-your-Writes Consistency 
 
After a process has updated a data item, it will never see an older value 
on subsequent accesses. 
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Weak Consistency: Causal Consistency 

Definition 
A system provides causal consistency if memory operations that 
potentially are causally related are seen by every node of the system in 
the same order. Concurrent writes (i.e. ones that are not causally related) 
may be seen in different order by different nodes. 

Definition 
The following pairs of operations are causally related: 
• Two writes by the same process to any memory location. 
• A read followed by a write of the same process (even if the write 

addresses a different memory location). 
• A read that returns the value of a write from any process. 
• Two operations that are transitively related according to the above 

conditions. 
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Causal Consistency: Example 

A X Y B 

write(u:=7) 

read(u) 

7 

write(u:=9) write(u:=4) 

read(u) 

4 

read(u) 

9 

read(u) 

4 

read(u) 

9 

This execution is causally consistent, but 
NOT sequentially consistent 

causal 
relationships 
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Large-Scale Fault-Tolerant Systems 

 
• How do we build these highly available, fault-tolerant systems consisting 

of 1k, 10k,…, 1M nodes? 
 

• Idea: Use a completely decentralized system, with a focus on availability, 
only giving weak consistency guarantees. This general approach has been 
popular recently, and is known as, e.g. 

– Cloud Computing: Currently popular umbrella name 
– Grid Computing: Parallel computing beyond a single cluster 
– Distributed Storage: Focus on storage 
– Peer-to-Peer Computing: Focus on storage, affinity with file sharing 
– Overlay Networking: Focus on network applications 
– Self-Organization, Service-Oriented Computing, Autonomous Computing, etc. 

 
• Technically, many of these systems are similar, so we focus on one. 
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P2P: Distributed Hash Table (DHT) 

 
• Data objects are distributed among the peers 

– Each object is uniquely identified by a key 
• Each peer can perform certain operations 

– Search(key)  (returns the object associated with key) 
– Insert(key, object) 
– Delete(key) 

 
• Classic implementations of these operations 

– Search Tree (balanced, B-Tree) 
– Hashing (various forms) 

 
• “Distributed” implementations 

– Linear Hashing 
– Consistent Hashing 
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Distributed Hashing 

hash 
.10111010101110011… ≈ .73 

0 1 .101x 

 
• The hash of a file is its key 

 
 
 
 

• Each peer stores data in a certain range of the ID space [0,1] 
 
 
 
 
 
 

• Instead of storing data at the right peer, just store a forward-pointer  
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Linear Hashing 

 
• Problem: More and more objects should be stored  Need to buy new 

machines! 
• Example: From 4 to 5 machines 

0 1 

0 1 

0 1 

Move many objects (about 1/2) 

Linear Hashing: Move only a few objects to new machine (about 1/n) 
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Consistent Hashing 

 
• Linear hashing needs central dispatcher 
• Idea: Also the machines get hashed! Each machine is responsible for the 

files closest to it 
• Use multiple hash functions for reliability! 

 

0 1 
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Search & Dynamics 

 
• Problem with both linear and consistent hashing is that all the 

participants of the system must know all peers… 
– Peers must know which peer they must contact for a certain data item 
– This is again not a scalable solution… 

 
• Another problem is dynamics! 

– Peers join and leave (or fail) 
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P2P Dictionary = Hashing 

hash 
10111010101110011… 

0000x 0001x 
001x 

01x 
100x 101x 

11x 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

P2P Dictionary = Search Tree 

0000x 0001x 
001x 

01x 
100x 101x 

11x 
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Storing the Search Tree 

 
• Where is the search tree stored? 
• In particular, where is the root stored? 

– What if the root crashes?! The root clearly reduces scalability & fault 
tolerance… 

– Solution: There is no root…! 
• If a peer wants to store/search, how does it know where to go? 

– Again, we don’t want that every peer has to know all others… 
– Solution: Every peer only knows a small subset of others 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

1x 

01x 

000x 001x 

The Neighbors of Peers 001x 
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P2P Dictionary: Search 

0001x 

001x 

0000x 

01x 

1100x 
Search hash 
value 1011… 

1011x 

1010x 

0x 

111x 

1101x 

Target 
machine 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

1x 

01x 

000x 001x 

P2P Dictionary: Search 

 
• Again, 001 searches for 100: 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

0x 

11x 

101x 100x 

P2P Dictionary: Search 

 
• Again, 001 searches for 100: 
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Search Analysis 

 
• We have n peers in the system 
• Assume that the “tree” is roughly balanced 

– Leaves (peers) on level log2 n ± constant 
 

• Search requires O(log n) steps 
– After kth step, the search is in a subtree on level k 
– A “step” is a UDP (or TCP) message 
– The latency depends on P2P size (world!) 

 
• How many peers does each peer have to know? 

– Each peer only needs to store the address of  log2 n ± constant peers 
– Since each peer only has to know a few peers, even if n is large, the system 

scales well! 
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Peer Join 

 
• How are new peers inserted into the system? 

 
• Step 1: Bootstrapping 

 
• In order to join a P2P system, a joiner must already know a peer already in 

the system 
• Typical solutions: 

– Ask a central authority for a list of IP addresses that have been in the P2P 
regularly; look up a listing on a web site 

– Try some of those you met last time 
– Just ping randomly (in the LAN) 



2/152 

Peer Join 

 
• Step 2: Find your place in the P2P system 

 
• Typical solution: 

– Choose a random bit string (which determines the place in the system) 
– Search* for the bit string 
– Split with the current leave responsible for the bit string 
– Search* for your neighbors 

 
 * These are standard searches 

Peer ID! 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

Random Bit String = 100101… 

Example: Bootstrap Peer with 001 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

Random Bit String 
= 100101… 

New Peer Searches 100101... 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

1 0 

New Peer found leaf with ID 100... 

 
• The leaf and the new peer 

split the search space! 
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1 0 

1 0 

1 0 

1 0 
1 0 

1 0 

Find Neighbors 

1 0 
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Peer Join: Discussion 

 
• If tree is balanced, the time to join is  

– O(log n) to find the right place 
– O(log n)∙O(log n) = O(log2 n) to find all neighbors 

 
• It is be widely believed that since all the peers choose their position 

randomly, the tree will remain more or less balanced 
– However, theory and simulations show that this is not really true! 

A regular 
search… 
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Peer Leave 

 
• Since a peer might leave spontaneously (there is no leave message), the 

leave must be detected first 
• Naturally, this is done by the neighbors in the P2P system (all peers 

periodically ping neighbors) 
• If a peer leave is detected, the peer must be replaced. If peer had a sibling 

leaf, the sibling might just do a “reverse split”: 
 
 
 
 
 
 
 

• If a peer does not have a sibling, search recursively! 

1 0 

1 0 

1 0 
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1 0 

1 0 

1 0 

Peer Leave: Recursive Search 

 
• Find a replacement: 

1. Go down the sibling tree until you find sibling leaves 
2. Make the left sibling the new common node 
3. Move the free right sibling to the empty spot 

 

1 0 

1 0 

left right 

left 
right 
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Fault-Tolerance? 

 
• In P2P file sharing, only pointers to the data is stored 

– If the data holder itself crashes, the data item is not available anymore 
 

• What if the data holder is still in the system, but the peer that stores the 
pointer to the data holder crashes? 

– The data holder could advertise its data items periodically 
– If it cannot reach a certain peer anymore, it must search for the peer that is 

now responsible for the data item, i.e., the peer’s ID is closest to the data 
item’s key 
 

• Alternative approach: Instead of letting the data holders take care of the 
availability of their data, let the system ensure that there is always a 
pointer to the data holder! 

– Replicate the information at several peers 
– Different hashes could be used for this purpose 
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Questions of Experts… 

 
• Question: I know so many other structured peer-to-peer systems (Chord, 

Pastry, Tapestry, CAN…); they are completely different from the one you 
just showed us! 
 

• Answer: They look different, but in fact the difference comes mostly from 
the way they are presented (I give a few examples on the next slides) 
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The Four P2P Evangelists 

 
• If you read your average P2P paper, there are (almost) always four papers 

cited which “invented” efficient P2P in 2001: 
 
 
 
 

• These papers are somewhat similar, with the exception of CAN (which is 
not really efficient) 
 

• So what are the „Dead Sea scrolls of P2P”? 

Chord CAN Pastry Tapestry 
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Intermezzo: “Dead Sea Scrolls of P2P” 

 
 „Accessing Nearby Copies of Replicated Objects in a Distributed 

Environment“ [Greg Plaxton, Rajmohan Rajaraman, and Andrea Richa, 
SPAA 1997] 
 

• Basically, the paper proposes an efficient search routine (similar to the 
four famous P2P papers) 

– In particular search, insert, delete, storage costs are all logarithmic, the base 
of the logarithm is a parameter 

 
• The paper takes latency into account 

– In particular it is assumed that nodes are in a metric, and that the graph is of 
„bounded growth“ (meaning that node densities do not change abruptly) 
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Intermezzo: Genealogy of P2P 

Chord CAN Pastry Tapestry 2001 

Napster 

1997 

2002 Kademlia P-Grid Viceroy 

SkipGraph SkipNet 2003 

Plaxton et al. 

Koorde 

1998 

1999 

2000 Gnutella 

Kazaa 

Gnutella-2 

eDonkey 

BitTorrent 

Skype Steam 

WWW, POTS, etc.  

PS3 

The parents of Plaxton et al.: 
Consistent Hashing, Compact Routing, … 
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Chord 

 
• Chord is the most cited P2P system [Ion Stoica, Robert Morris, David 

Karger, M. Frans Kaashoek, and Hari Balakrishnan, SIGCOMM 2001] 
 

• Most discussed system in distributed systems and networking books, for 
example in Edition 4 of Tanenbaum’s Computer Networks 
 

• There are extensions on top of it, such as CFS, Ivy… 
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Chord 

 
• Every peer has log n many neighbors 

– One in distance ≈2k 

for k = 0,1, 2, …, log n -1 

0000x 0001x 
001x 

01x 

100x 

101x 

11x 
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Example: Dynamo 

 
• Dynamo is a key-value storage system by Amazon (shopping carts) 
• Goal: Provide an “always-on” experience 

– Availability is more important than consistency 
• The system is (nothing but) a DHT 
• Trusted environment (no Byzantine processes) 
• Ring of nodes 

– Node ni is responsible for keys between ni-1 and ni  
– Nodes join and leave dynamically 

• Each entry replicated across N nodes 
• Recovery from error: 

– When? On read 
– How? Depends on application, e.g. “last write 

wins” or “merge” 
– One vector clock per entry to manage  

different versions of data 

Basically what 
we talked about 
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Skip List 

 
• How can we ensure that the search tree is balanced? 

– We don’t want to implement distributed AVL or red-black trees… 
• Skip List: 

– (Doubly) linked list with sorted items 
– An item adds additional pointers on level 1 with probability ½. The items with 

additional pointers  further add pointers on level 2 with prob. ½ etc. 
– There are log2 n levels in expectation 

• Search, insert, delete: Start with root, search for the right interval on 
highest level, then continue with lower levels 

17 34 ∞ 60 69 78 84 7 11 32 root 

root ∞ 

0 

1 

2 

3 

root 

root 

∞ 

∞ 
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Skip List 

 
• It can easily be shown that search, insert, and delete terminate in O(log n) 

expected time, if there are n items in the skip list 
• The expected number of pointers is only twice as many as with a regular 

(doubly) linked list, thus the memory overhead is small 
• As a plus, the items are always ordered… 
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P2P Architectures 

 
• Use the skip list as a P2P architecture 

– Again each peer gets a random value between 0 and 1 and is responsible for 
storing that interval  

– Instead of a root and a sentinel node (“∞”), the list is short-wired as a ring 
 

• Use the Butterfly or DeBruijn graph as a P2P architecture 
– Advantage: The node degree of these graphs is constant  Only a constant 

number of neighbors per peer 
– A search still only takes O(log n) hops 
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Dynamics Reloaded 

 
• Churn: Permanent joins and leaves 

– Why permanent? 
– Saroiu et al.: „A Measurement Study of P2P File Sharing Systems“:  

Peers join system for one hour on average 
– Hundreds of changes per second with millions of peers in the system! 

 
• How can we maintain desirable 

properties such as 
– connectivity 
– small network diameter 
– low peer degree? 
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A First Approach 

 
• A fault-tolerant hypercube? 

 
• What if the number of peers is not 2i? 
• How can we prevent degeneration? 
• Where is the data stored? 

 
 

• Idea: Simulate the hypercube! 
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Simulated Hypercube 

 
• Simulation: Each node consists of several peers 

 
• Basic components: 
• Peer distribution 

– Distribute peers evenly 
among all hypercube nodes 

– A token distribution problem 
• Information aggregation 

– Estimate the total number of 
peers 

– Adapt the dimension of 
the simulated hypercube 
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Peer Distribution 

 
• Algorithm: Cycle over dimensions 

and balance! 
• Perfectly balanced after d rounds 

 
 
 

 
• Problem 1: Peers are not fractional! 
• Problem 2: Peers may join/leave 

during those d rounds! 
• “Solution”: Round numbers and 

ignore changes during the d rounds 

Dimension of 
hypercube 
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Information Aggregation 

 
• Goal: Provide the same (good!) estimation of the total number of peers 

currently in the system to all nodes 
• Algorithm: Count peers in every sub-cube by exchanging messages wih 

the corresponding neighbor! 
• Correct number after d rounds 

 
• Problem: Peers may join/leave 

during those d rounds! 
• Solution: Pipe-lined execution 

 
 
• It can be shown that all nodes get the same estimate 
• Moreover, this number represents the correct state d rounds ago! 
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Composing the Components 

 
• The system permanently runs 

– the peer distribution algorithm to balance the nodes 
– the information aggregation algorithm to estimate the total number of peers 

and change the dimension accordingly 
 

• How are the peers connected inside a simulated node, and how are the 
edges of the hypercube represented? 
 

• Where is the data of the DHT stored? 
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Distributed Hash Table 

 
• Hash function determines node where data is replicated 
• Problem: A peer that has to move to another node must store different 

data items 
• Idea: Divide peers of a node into 

core and periphery  
– Core peers store data 
– Peripheral peers are used for 

peer distribution 
 

• Peers inside a node are 
completely connected 

• Peers are connected to all 
core peers of all neighboring 
nodes 
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Evaluation 

 
• The system can tolerate O(log n) joins and leaves each round 

 
• The system is never fully repaired, but always fully functional! 

 
• In particular, even if there are O(log n) joins/leaves per round we always 

have 
– at least one peer per node 
– at most O(log n) peers per node 
– a network diameter of O(log n) 
– a peer degree of O(log n) 

 

Number of 
neighbors/connections 
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Byzantine Failures 

 
• If  Byzantine nodes control more and more corrupted nodes and then 

crash all of them at the same time (“sleepers”), we stand no chance. 
 

• “Robust Distributed Name Service” [Baruch Awerbuch and Christian 
Scheideler, IPTPS 2004] 
 

• Idea: Assume that the Byzantine peers 
are the minority. If IDs are chosen 
uniformly at random, the number of 
peers in any fraction of the ID space 
can be bounded with high probability. 
If there are many Byzantine peers in 
the same region, they can be detected 
(because of their unusual high 
density). This unsafe fraction is ignored. 
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Selfish Peers 

 
• Peers may not try to destroy the system, instead they may try to benefit 

from the system without contributing anything 
• Such selfish behavior is called free riding or freeloading 

 
• Free riding is a common problem in file sharing applications: 
• Studies show that most users in the Gnutella network do not provide 

anything 
– Gnutella is accessed through clients such as BearShare, iMesh… 

 
• Protocols that are supposed to be “incentive-compatible”, such as 

BitTorrent, can also be exploited 
– The BitThief client downloads without uploading! 
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state updates 

Computation in Large Systems 

 
• So far, we talked (mainly) about storage systems 

– Main question: How can we guarantee a consistent 
system state 
 
 

 
 

• Large systems can also be used for distributed computation 
– Distribute work load in the system! 
– How can we do this? 
– What can go wrong? 

job 

result 

job 

result 
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Computation in Large Systems: Basic Idea 

 
• Several steps are needed for a parallel execution: 

 
• The job must be split into many small jobs 

– These jobs can be executed in parallel 
 

• The jobs must be distributed 
– Each „worker machines“ may get many jobs 

 
• The  results are sent back to the master 

 
• The partial results may be merged 

job 

j1 jm … j2 

… 

r1 rm … r2 

result 
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Computation in Large Systems: What if… 

 
• Several issues need to be addressed: 

 
• What if a worker machine crashes? 
 
• What if a worker machine is very slow? 

– Bottleneck of the computation 
 
 
 
 

• We have the same problems as before...! 

j1 j2 

??? 

z z z z 
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Computation in Large Systems: More Problems 

 
• Even if there were no such problems, we need to 

– write code for the worker machines and install 
this code on the machines 

– split the job into smaller jobs 
– assign jobs to worker machines 
– distribute the jobs to the machines 
– balance the load on all machines 
– collect the (partial) results from the machines 
– assembly the results 

 
• The complexity of the program increases significantly!!! 

 
• Moreover, we do not want to re-execute all steps if we need to solve 

different computational problems... 
• Solution? 
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MapReduce 

 
• MapReduce is a framework developed by Google that addresses all these 

issues 
– Parallelization, fault-tolerance, data distribution, load balancing 
– All in one library! 

 
• Model for the jobs: Each job is considered a two-step operation, a map 

followed by a reduce 
 

• map and reduce are popular concepts in functional programming 
– map: A function f is applied to each element of a list  The result is a list 
– reduce: A function f is applied to an accumulator combined with each 

element of a list  The result is in the accumulator 
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MapReduce: Map & Reduce 

 
• map: A function f is applied to each element of a list  The result is a list 

 
 

 
 
 
 

• reduce: A function f is applied to an accumulator combined with each 
element of a list  The result is in the accumulator 
 
 

a1 am a2 . . . 

f a a a a f f f f . . . 

a1 am a2 . . . 

b1 bm b2 . . . 
f f f 
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MapReduce: Functional Programming 

 
• The type of map is: (a -> b) -> (a list) -> (b list) 

 
 
 

• map f [] = []  | 
map f (h::list) = (f h) :: (map f list) 
 

• The type of reduce is: (a*b-> b) -> b -> (a list) -> b 
 
 
 

• reduce  f acc [] = acc  | 
reduce f acc (h::list) = reduce f (f h acc) list  
 
 

Function f mapping 
element a to b 

Input list of 
elements of type a 

Output list of 
elements of type b 

Function f mapping 
pair (a,b) to b 

Accumulator 
of type b 

Input list of 
elements of type a 

Output in the 
accumulator 

concatenation 

Also called a fold 
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MapReduce: What is this good for? 

 
• Many  functions can be expressed with map & reduce! 
• Example 1: Function double that doubles all the values in a list 
• How can we express this function using map and/or reduce? 

 
• Answer: double list = map (x => 2*x) list 

 
• Example 2: Function sum that sums up all the values in a list 
• How can we express this function? 

 
• Answer: sum list = reduce (acc x => acc+x) 0 list 

 
 

• Cool, but how can we use this in a distributed system? 
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MapReduce: Basic Approach 

 
• In MapReduce, the input data is always a list of key/value pairs, and the 

output is also a list of key/value pairs  
• The map function maps a key/value pair to a list of intermediate 

key/value pairs: 
 
 
 

• The reduce function merges all intermediate values associated with the 
same intermediate key: 
 
 
 
 

<key,val>  {<key1,val1>,...,<keyn,valn>} 

{<keyi, vali1>,...,< keyi,valim>}  <keyi,val‘> 
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MapReduce: Architecture 

 
• There are many worker machines 
• The input list is split and sent to the worker machines 
• The function map is executed and the output  is sent to reduce workers 
• The reduce workers execute reduce and send/store the results 

Same pool 
of workers 
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MapReduce: Architecture 

 
• One worker is the master 
• It assigns map & reduce jobs to the other workers 
• It stores the state of each map & reduce job 

(idle,in-progress,completed) and the identify of all non-idle machines 
• It stores the locations of the output files of the map & reduce tasks 

job 

master 

map & reduce 

map 

map & reduce 

reduce 
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MapReduce: Example Tasks 

 
• URL access frequency: Given a (distributed) DB of URLs, find  the top-100 

URLs that were accessed the most! 
– The map function outputs <URL_key,1> for each URL 
– The reduce function adds together all values for the same URL key 
– The output is merged and sorted according to the values  

• Inverted index: For each keyword, find the (web) documents that contain 
this word! 

– The map function emits <word,doc_key> when processing documents 
– The reduce funtion adds all document keys to a list for each assigned keyword 

• Reverse web-link graph: For each website, find the websites that have a 
link to it! 

– The map function outputs <target,source> if a link to the website target is 
found when parsing the website source 

– The reduce funtion adds all sources to a list for each assigned target website 
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MapReduce: Fault Tolerance 

 
• What if a worker machine fails? 
• The master pings each worker periodically 

– Time-out Worker is marked as failed 
• All map tasks and incomplete reduce tasks are computed again on a 

different machine! 
• Only completed reduce tasks are not executed again since the results are 

stored in a global file system 
 
• If a map worker fails, the corresponding reduce workers are notified 

– The intermediate results will be read from the new map worker 

Results stored on 
failed machine… 

Such as Google’s GFS 

update 
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MapReduce: Fault Tolerance 

 
• What if the master fails? 
• The master could write periodic checkpoints and store them in the global 

file system 
 

• However, since the failure of the master is unlikely, the entire 
computation is aborted 

– The clients can retry the MapReduce operation 

Motivation: Simple 
implementation 

??? 

??? 

? 
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MapReduce: Optimizations 

 
• Several optimizations are implemented to speed up the computation: 
• Locality: Conserve network bandwidth 

– The master attempts to schedule map tasks on machines containing the 
corresponding input data 

– If this is not possible, it tries to find a machine on the same network switch 
 

 
 

• Backup tasks: Speed up the „end game“ 
– When close to completion, backup executions of the remaining tasks are 

started 
– The task is marked as complete when any machine completes it 

data 

job 

z z z 

backup backup 
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MapReduce: Optimizations 

 
• Combiner functions: Perform a local reduce operation 

– If the reduce function is commutative and associative, the output of the map 
function can be combined locally 

– For example, when computing word counts: Entries <word,1>, <word,1>, 
<word,1> can be merged  <word,3> 

– Reduce workers need to read less data! 
 

• Skipping Bad Records: Ensure termination 
– If there is bug in the user code causing a map or reduce task to crash on 

certain records, reassigning the task does not help 
– If the master sees more than one failure for a certain record, it instructs the 

workers to skip it 

Sometimes the bug cannot 
be fixed, e.g., if the source 

code is unavailable 
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MapReduce: Performance 

 
• Test: How long does it take to sort 1010 100-byte records? 

 
• Sorting with MapReduce...? 

– The map function extracts a 10-byte sorting key from each record and emits 
the key and the record as the intermediate key/value  

– The reduce function is the identity function because MapReduce ensures that 
intermediate key/value pairs are processed in increasing key order 

– Thus, the map and reduce functions basically do not incur any costs  The 
performance of the architecture itself is measured! 

 
• There are 15,000 map tasks and 4000 reduce tasks and 1800 workers 
• Test (a): Normal execution 
• Test (b): No backup tasks 
• Test (c): 200 worker processes killed after several minutes 

≈1TB 
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MapReduce: Performance 

 
 

891 
seconds! 

Input is 
read 

Data sent 
from map to 
reduce tasks 

Data written 
to final 

output files 

1283 
seconds! 

First batch of 
reduce tasks 

5 slow 
tasks left! 
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MapReduce: Performance 

 
 

Input is 
read 

Data sent 
from map to 
reduce tasks 

Data written 
to final 

output files 

891 
seconds! 

First batch of 
reduce tasks 

Previously 
completed tasks 

disappear! 

933 
seconds! 
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MapReduce: Implementation 

 
• The most widely used implementation of MapReduce is called Hadoop 

– Free Apache project written in Java 
• Hadoop is used to run large distributed computations in many companies: 

 
 
 
 
 
 
 
 
 

• How is Hadoop used? 

Amazon 
eBay 
HP 
IBM 
Microsoft 
Twitter 
... 
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Hadoop: Example - Word Count 

 
• Simple example: Compute the word counts 

The entries 
are sorted! 
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Hadoop: Example - Word Count 

public class WordCount { 
 
      public static class Map extends MapReduceBase implements 
      Mapper<LongWritable,Text,Text,IntWritable> { 
            private final static IntWritable one = new IntWriteable(1); 
            private Text word = new Text(); 
 
            public void map(LongWritable key,Text value, 
            OutputCollector<Text,IntWritable> output,Reporter reporter) 
             throws IOException { 
          String line = value.toString(); 
                   StringTokenizer tokenizer = new StringTokenizer(line); 
                   while(tokenizer.hasMoreTokens()) { 
                         word.set(tokenizer.nextToken()); 
                         output.collect(word,one); } 
            } 
      } 

map & reduce are 
implemented as classes 
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Hadoop: Example - Word Count 

      …… 
       
      public static class Reduce extends MapReduceBase implements 
      Reducer<Text,IntWritable,Text,IntWritable> { 
             
            public void reduce(Text key,Iterator<IntWritable> values, 
            OutputCollector<Text,IntWritable>,Reporter reporter) 
            throws IOException { 
         int sum = 0; 
                  while(values.hasNext()) sum += values.next().get(); 
                  output.collect(key,new IntWritable(sum)); 
            } 
      } 
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Hadoop: Example - Word Count 

      …… 
       
      public static void main(String[] args) throws Exception { 
            JobConf conf = new JobConf(WordCount.class); 
            conf.setJobName(“wordcount“); 
            conf.setOutputKeyClass(Text.class); 
            conf.setMapperClass(Map.class); 
            conf.setCombinerClass(Reduce.class); 
            conf.setReducerClass(Reduce.class); 
            conf.setInputFormat(TextInputFormat.class); 
            conf.setOutputFormat(TextOutputFormat.class); 
            conf.setInputPath(new Path(args[0])); 
            conf.setOutputPath(new Path(args[1])); 
            JobClient.runJob(conf); 
      } 
} 

Configure map & reduce 
for this job 

This code can be run locally or in a 
fully-distributed Hadoop installation! 
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MapReduce: Summary 

 
• The MapReduce framework turned out to be very successful 

– Used by many big companies 
• Google reported in 2008 that they can sort 1TB in 68 seconds 

– Using 1000 machines and 12,000 disks 
• Google said that they can even sort 1PB (!) in 6 hours and 2 minutes 

– Using 4000 machines and 48,000 disks 
 

• Shortcomings? 
– If the master fails, the operation fails 
– The reduce tasks are started after the last map task is complete 
– The framework is not suitable for all tasks! For example,  given a large 

weighted graph, how do you compute shortest paths, a minimum spanning 
tree, the page rank of each node etc.? 

Why? Simple 
implementation 
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Summary 

 
• We have systems that guarantee strong consistency 

– 2PC, 3PC 
– Paxos 
– Chubby 
– PBFT 
– Zyzzyva 

• We also talked about techniques to handle large-scale networks 
– Consistent hashing 
– DHTs, P2P techniques 
– Dynamo 
– Dynamics 

– In addition, we have discussed several other issues 
– Consistency models 
– Distributed computation 
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Credits 

 
• The Paxos algorithm is due to Lamport, 1998. 
• The Chubby system is from Burrows, 2006. 
• PBFT is from Castro and Liskov, 1999. 
• Zyzyvva is from Kotla, Alvisi, Dahlin, Clement, and Wong, 2007. 
• Concurrent hashing and random trees have been proposed by Karger, 

Lehman, Leighton, Levine, Lewin, and Panigrahy, 1997. 
• The churn-resistent P2P System is due to Kuhn et al., 2005. 
• Dynamo is from DeCandia et al., 2007. 
• Selfish Caching is from Chun et al., 2004. 
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Thomas Locher 
Roger Wattenhofer 

That’s all, folks! 
Questions & Comments? 
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More BFT Systems in a Nutshell: PeerReview 

 
• The goal of PeerReview is to provide accountability for distributed 

systems 
– All nodes store I/O events, including all messages, 

in a local log 
– Selected nodes (“witnesses”) are responsible 

for auditing the log 
– If the witnesses detect misbehavior,  

they generate evidence and 
make the evidence available 

– Other nodes check the evidence and 
report the fault 

• What if a node tries to manipulate 
its log entries? 

– Log entries form a hash chain 
creating secure histories 

 

A's log 

B's log 

A 

B 

C 
D 

E 

A's witnesses 
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More BFT Systems in a Nutshell: PeerReview 

 
• PeerReview has to solve the same problems… 

– Byzantine nodes must not be able to convince correct nodes that another 
correct node is faulty 

– The witness sets must always contain at least one correct node 
 

• PeerReview provides the following guarantees: 
 

1. Faults will be detected 
– If a node commits a fault and it has a correct witness, then the witness 

obtains a proof of misbehavior or a challenge that the faulty node cannot 
answer 

2. Correct nodes cannot be accused 
– If a node is correct, then there cannot be a correct proof of misbehavior and 

it can answer any challenge 
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More BFT Systems in a Nutshell: FARSITE 

 
• “Federated, Available, and Reliable Storage for an Incompletely Trusted 

Environment” 
• Distributed file system without servers 
• Clients contribute part of their hard disk to FARSITE 

 
• Resistant against attacks: It tolerates f < n/3 Byzantine clients 
• Files 

– f+1 replicas per file to tolerate f failures 
– Encrypted by the user 

• Meta-data/Directories 
– 3f+1 replicas store meta-data of the files 
– File content hash in meta-data allows verification 
– How is consistency established? FARSITE uses PBFT! 

More efficient 
than replicating 

the files! 
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