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Overview

• Introduction

• Strong Consistency

– Crash Failures: Primary Copy, Commit Protocols

– Crash-Recovery Failures: Paxos, Chubby

– Byzantine Failures: PBFT, Zyzzyva

• CAP: Consistency or Availability?

• Weak Consistency

– Consistency Models

– Peer-to-Peer, Distributed Storage, Cloud Computing

• Computation: MapReduce
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Computability vs. Efficiency

• In the last part, we studied computability

– When is it possible to guarantee consensus?

– What kind of failures can be tolerated?

– How many failures can be tolerated?

• In this part, we consider practical solutions

– Simple approaches that work well in practice

– Focus on efficiency

0 1 1 0 1 0
1Worst-case

scenarios!
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Fault-Tolerance in Practice

• Fault-Tolerance is achieved through replication

???

Replicated
data
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Replication is Expensive

• Reading a value is simple  Just query any server

• Writing is more work  Inform all servers about the update

– What if some servers are not available?
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Read: Write:
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Primary Copy

• Can we reduce the load on the clients?

• Yes! Write only to one server (the primary copy), and let primary copy 
distribute the update

– This way, the client only sends one message in order to read and write

Primary
copy

w
w

w

w

w

r

Read: Write:
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Problem with Primary Copy

• If the clients can only send read requests to the primary copy, the system
stalls if the primary copy fails

• However, if the clients can also send read requests to the other servers,
the clients may not have a consistent view

w

w

w

r

Reads an
outdated value!!!
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State Machine Replication?

• The state of each server has to be updated in the same way

• This ensures that all servers are in the same state whenever all updates 
have been carried out!

• The servers have to agree on each update

 Consensus has to be reached for each update!

A B …A C

A B …A

C

A B …AC

C
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Impossible to guarantee consensus using a 
deterministic algorithm in asynchronous
systems even if only one node is faulty

Theory Practice

Consensus is required to guarantee
consistency among different replicas
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From Theory to Practice

• So, how do we go from theory to practice…?

• Communication is often not synchronous, but
not completely asynchronous either

– There may be reasonable bounds on the message delays

– Practical systems often use message passing. The machines wait for the
response from another machine and abort/retry after time-out

– Failures: It depends on the application/system what kind of failures have to
be handled…

• That is...

– Real-world protocols also make assumptions about the system

– These assumptions allow us to circumvent the lower bounds!

Depends on the bounds
on the message delays!
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System

• Storage System

– Servers: 2...Millions

– Store data and react to client
request

• Processes

– Clients, often millions

– Read and write/modify data
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Consistency Models (Client View)

• Interface that describes the system behavior (abstract away
implementation details)

• If clients read/write data, they expect the behavior to be the same as for
a single storage cell.
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Let‘s Formalize these Ideas

• We have memory that supports 3 types of operations:

– write(u := v): write value v to the memory location at address u

– read(u): Read value stored at address u and return it

– snapshot(): return a map that contains all address-value pairs

• Each operation has a start-time Ts and return-time TR (time it returns to 
the invoking client). The duration is given by TR – Ts.

start-time

A X Y B

read(u)

write(u := 3)

return-time

replica
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Motivation

read(u)

?

write(u:=1)

write(u:=2)

write(u:=3)

write(u:=4)

write(u:=5)

write(u:=6)

write(u:=7)

time
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Executions

• We look at executions E that define
the (partial) order in which 
processes invoke operations.

• Real-time partial order of an
execution <r:

– p <r q means that duration of
operation p occurs entirely before 
duration of q (i.e., p returns before 
the invocation of q in real time).

• Client partial order <c :

– p <c q means p and q occur at the
same client, and that p returns
before q is invoked.

A B

Real time partial 
order <r

A B

Client partial 
order <c
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Strong Consistency: Linearizability

• A replicated system is called linearizable if it behaves exactly as a single-
site (unreplicated) system.

Definition

Execution E is linearizable if there exists a sequence H such that:

1) H contains exactly the same operations as E, each paired
with the return value received in E

2) The total order of operations in H is compatible with the
real-time partial order <r

3) H is a legal history of the data type that is replicated
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Example: Linearizable Execution

A X Y B

read(u1)

write(u2 := 7)

snapshot()

5

(u0:0, u1:5,
u2:7, u3:0)

write(u1 := 5)

read(u2)

0

write(u3 := 2)

Valid sequence H:

1.) write(u1 := 5)
2.) read(u1) → 5
3.) read(u2) → 0
4.) write(u2 := 7)
5.) snapshot() →

(u0: 0, u1: 5, u2:7, u3:0)
6.) write(u3 := 2)

For this example, this is the
only valid H. In general there
might be several sequences
H that fullfil all required 
properties.

Real time partial order <r
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Strong Consistency: Sequential Consistency

• Orders at different locations are disregarded if it cannot be determined by 
any observer within the system.

• I.e., a system provides sequential consistency if every node of the system
sees the (write) operations on the same memory address in the same
order, although the order may be different from the order as defined by 
real time (as seen by a hypothetical external observer or global clock).

Definition

Execution E is sequentially consistent if there exists a sequence H such that:

1) H contains exactly the same operations as E, each paired with the
return value received in E

2) The total order of operations in H is compatible with the client partial
order <c

3) H is a legal history of the data type that is replicated
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Example: Sequentially Consistent

A X Y B

read(u1)

snapshot()

5

(u0:0, u1:5,
u2:7, u3:0)

write(u1 := 5)

read(u2)

0

write(u3 := 2)

Real-time partial order requires write(3,2)
to be before snapshot(), which contradicts

the view in snapshot()!

write(u2 := 7)

Client partial order <c

Valid sequence H:

1.) write(u1 := 5)
2.) read(u1) → 5
3.) read(u2) → 0
4.) write(u2 := 7)
5.) snapshot() →

(u0:0, u1:5, u2:7, u3:0)
6.) write(u3 := 2)
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Is Every Execution Sequentially Consistent?

A X Y B

write(u2 := 7)

snapshotu0,u1()

(u0:8, u1:0)

write(u1 := 5)

snapshotu2,u3()

(u2:0, u3:2)

write(u3 := 2)

write(u0 := 8)

write(u2 := 7) write(u1 := 5)

write(u0 := 8) write(u3 := 2)

Circular dependencies! 

I.e., there is no valid total order and thus above
execution is not sequentially consistent
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Sequential Consistency does not Compose

A X Y B

write(u2 := 7)

snapshotu0,u1()

(u0:8, u1:0)

write(u1 := 5)

snapshotu2,u3()

(u2:0, u3:2)

write(u3 := 2)

write(u0 := 8)

• If we only look at data items 0
and 1, operations are
sequentially consistent

• If we only look at data items 2
and 3, operation are also
sequentially consistent

• But, as we have seen before,
the combination is not
sequentially consistent

Sequential consistency does not compose!

(this is in contrast to linearizability)
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Transactions

• In order to achieve consistency, updates have to be atomic

• A write has to be an atomic transaction

– Updates are synchronized

• Either all nodes (servers) commit a transaction or all abort

• How do we handle transactions in asynchronous systems?

– Unpredictable messages delays!

• Moreover, any node may fail…

– Recall that this problem cannot
be solved in theory!

Long delay

Short delay
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Two-Phase Commit (2PC)

• A widely used protocol is the so-called two-phase commit protocol

• The idea is simple: There is a coordinator that coordinates the transaction

– All other nodes communicate only with the coordinator

– The coordinator communicates the final decision

Coordinator
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Two-Phase Commit: Failures

• Fail-stop model: We assume that a failed node does not re-emerge

• Failures are detected (instantly)

– E.g. time-outs are used in practical systems to detect failures

• If the coordinator fails, a new coordinator takes over (instantly)

– How can this be accomplished reliably?

Coordinator New
coordinator
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Two-Phase Commit: Protocol

• In the first phase, the coordinator asks if all nodes are ready to commit

• In the second phase, the coordinator sends the decision (commit/abort)

– The coordinator aborts if at least one node said no

Coordinator

ready

ready

ready

ready

yes
yes

yes no

Coordinator

abort abort

abort abort

ack ack

ack ack
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Two-Phase Commit: Protocol

Phase 1:

Coordinator sends ready to all nodes

If a node receives ready from the coordinator:
If it is ready to commit

Send yes to coordinator
else

Send no to coordinator
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Two-Phase Commit: Protocol

Phase 2:

If the coordinator receives only yes messages:
Send commit to all nodes

else
Send abort to all nodes

If a node receives commit from the coordinator:
Commit the transaction

else (abort received)
Abort the transaction

Send ack to coordinator

Once the coordinator received all ack messages:
It completes the transaction by committing or aborting itself
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Two-Phase Commit: Analysis

• 2PC obviously works if there are no failures

• If a node that is not the coordinator fails, it still works

– If the node fails before sending yes/no, the coordinator can either ignore it or
safely abort the transaction

– If the node fails before sending ack, the coordinator can still commit/abort
depending on the vote in the first phase
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Two-Phase Commit: Analysis

• What happens if the coordinator fails?

• As we said before, this is (somehow) detected and a new coordinator
takes over

• How does the new coordinator proceed?

– It must ask the other nodes if a node has already received a commit

– A node that has received a commit replies yes,
otherwise it sends no and promises not to accept
a commit that may arrive from the old coordinator

– If some node replied yes, the new
coordinator broadcasts commit

• This works if there is only one failure

• Does 2PC still work with multiple failures…?

This safety mechanism
is not a part of 2PC…
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Two-Phase Commit: Multiple Failures

• As long as the coordinator is alive, multiple failures are no problem

– The same arguments as for one failure apply

• What if the coordinator and another node crashes?

The nodes cannot commit! The nodes cannot abort!

yes

yes

no

abort

Aborted!

commit or
abort???

commit or
abort???

yes

yes

yes

commit

commit or
abort???

commit or
abort???

Committed!
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Two-Phase Commit: Multiple Failures

• What is the problem?

– Some nodes may be ready to commit while others have already committed or
aborted

– If the coordinator crashes, the other nodes are not informed!

• How can we solve this problem?

The remaining
nodes cannot make

a decision!
yes

yes

Yes/ no

commit/
abort

Committed/Aborted!

…???

…???
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Three-Phase Commit

• Solution: Add another phase to the protocol!

– The new phase precedes the commit phase

– The goal is to inform all nodes that all are ready to commit (or not)

– At the end of this phase, every node knows whether or not all nodes want to
commit before any node has actually committed or aborted!

• This protocol is called the three-phase commit (3PC) protocol

This solves the
problem of 2PC!
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Three-Phase Commit: Protocol

• In the new (second) phase, the coordinator sends prepare (to commit) 
messages to all nodes 

Coordinator

ready

ready

ready

ready

yes
yes

yes

yes

Coordinator

commit

commit

commit

commit

ackC
ackC

ackC

ackC

Coordinator

prepare

prepare

prepare

prepare

ack
ack

ack

ack

acknowledge
commit
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Three-Phase Commit: Protocol

Phase 1:

Coordinator sends ready to all nodes

If a node receives ready from the coordinator:
If it is ready to commit

Send yes to coordinator
else

Send no to coordinator

The first phase of 2PC 
and 3PC are identical!
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Three-Phase Commit: Protocol

Phase 2:

If the coordinator receives only yes messages:
Send prepare to all nodes

else
Send abort to all nodes

If a node receives prepare from the coordinator:
Prepare to commit the transaction

else (abort received)
Abort the transaction

Send ack to coordinator

This is the new phase
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Three-Phase Commit: Protocol

Phase 3:

Once the coordinator received all ack messages:
If the coordinator sent abort in Phase 2

The coordinator aborts the transaction as well
else (it sent prepare)

Send commit to all nodes

If a node receives commit from the coordinator:
Commit the transaction
Send ackCommit to coordinator

Once the coordinator received all ackCommit messages:
It completes the transaction by committing itself
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Three-Phase Commit: Analysis

• All non-faulty nodes either commit or abort

– If the coordinator doesn’t fail, 3PC is correct because the coordinator lets all
nodes either commit or abort

– Termination can also be guaranteed: If some node fails before sending
yes/no, the coordinator can safely abort. If some node fails after the
coordinator sent prepare, the coordinator can still enforce a commit because
all nodes must have sent yes

– If only the coordinator fails, we again don’t have a problem because the new
coordinator can restart the protocol

– Assume that the coordinator and some other nodes failed and that some
node committed. The coordinator must have received ack messages from all
nodes  All nodes must have received a prepare message. The new
coordinator can thus enforce a commit. If a node aborted, no node can have
received a prepare message. Thus, the new coordinator can safely abort the
transaction
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Three-Phase Commit: Analysis

• Although the 3PC protocol still works if multiple nodes fail, it still has 
severe shortcomings

– 3PC still depends on a single coordinator. What if some but not all nodes
assume that the coordinator failed?
 The nodes first have to agree on whether the coordinator crashed or not!

– Transient failures: What if a failed coordinator comes back to life? Suddenly,
there is more than one coordinator!

• Still, 3PC and 2PC are used successfully in practice

• However, it would be nice to have a practical protocol that does not 
depend on a single coordinator

– and that can handle temporary failures!

In order to solve consensus, you
first need to solve consensus…
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Paxos

• Historical note

– In the 1980s, a fault-tolerant distributed file system called “Echo” was built

– According to the developers, it achieves “consensus” despite any number of 
failures as long as a majority of nodes is alive

– The steps of the algorithm are simple if there are no failures and quite
complicated if there are failures

– Leslie Lamport thought that it is impossible to provide guarantees in this
model and tried to prove it

– Instead of finding a proof, he found a much simpler algorithm that works:
The Paxos algorithm

• Paxos is an algorithm that does not rely on a coordinator

– Communication is still asynchronous

– All nodes may crash at any time and they may also recover

fail-recover model
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Paxos: Majority Sets

• Paxos is a two-phase protocol, but more resilient than 2PC

• Why is it more resilient?

– There is no coordinator. A majority of the nodes is asked if a certain value can
be accepted

– A majority set is enough because the intersection of two majority sets is not
empty  If a majority chooses one value, no majority can choose another
value!

Majority set

Majority set
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Paxos: Majority Sets

• Majority sets are a good idea

• But, what happens if several nodes compete for a majority?

– Conflicts have to be resolved

– Some nodes may have to change their decision

No majority…

No majority…

No majority…
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Paxos: Roles

• Each node has one or more roles:

• Proposer

– A proposer is a node that proposes a certain value for acceptance

– Of course, there can be any number of proposers at the same time

• Acceptor

– An acceptor is a node that receives a proposal from a proposer

– An acceptor can either accept or reject a proposal

• Learner

– A learner is a node that is not involved in the decision process

– The learners must learn the final result from the proposers/acceptors

There are three roles



2/45

Paxos: Proposal

• A proposal (x,n) consists of the proposed value x and a proposal number n

• Whenever a proposer issues a new proposal, it chooses a larger (unique) 
proposal number

• An acceptor accepts a proposal (x,n) if n is larger than any proposal
number it has ever heard

• An acceptor can accept any number of proposals

– An accepted proposal may not necessarily be chosen

– The value of a chosen proposal is the chosen value

• Any number of proposals can be choosen

– However, if two proposals (x,n) and (y,m) are chosen,
then x = y

Give preference to larger
proposal numbers!

Consensus: Only one
value can be chosen! 
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Paxos: Prepare

• Before a node sends propose(x,n), it sends prepare(x,n)

– This message is used to indicate that the node wants to propose (x,n)

• If n is larger than all received request numbers, an acceptor returns the 
accepted proposal (y,m) with the largest request number m

– If it never accepted a proposal, the acceptor returns (Ø,0)

– The proposer learns about accepted proposals!
Note that m < n!

Majority set

prepare(x,n)

prepare(x,n)

prepare(x,n)

prepare(x,n)

Majority set

acc(y,m)

acc(z,l)

acc(Ø,0)

This is the first phase!
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Paxos: Propose

• If the proposer receives all replies, it sends a proposal

• However, it only proposes its own value, if it only received acc(Ø,0),
otherwise it adopts the value y in the proposal with the largest request 
number m

– The proposal still contains its sequence number n, i.e., (y,n) is proposed

• If the proposer receives all acknowledgements ack(y,n), the proposal is 
chosen

This is the second phase!

Majority set

propose(y,n)

propose(y,n)

propose(y,n)

propose(y,n)

Majority set

(y,n) is
chosen! ack(y,n)

ack(y,n)

ack(y,n)

ack(y,n)
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Paxos: Algorithm of Proposer

Proposer wants to propose (x,n):

Send prepare(x,n) to a majority of the nodes
if a majority of the nodes replies then

Let (y,m) be the received proposal with the largest request number
if m = 0 then (No acceptor ever accepted another proposal)

Send propose(x,n) to the same set of acceptors
else

Send propose(y,n) to the same set of acceptors

if a majority of the nodes replies with ack(x,n) (or ack(y,n))
The proposal is chosen!

After a time-out, the proposer gives 
up and may send a new proposal

The value of the proposal
is also chosen!
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Paxos: Algorithm of Acceptor

Initialize and store persistently:

nmax := 0
(xlast,nlast)  := (Ø,0)

Acceptor receives prepare (x,n):

if n > nmax then
nmax := n
Send acc(xlast,nlast) to the proposer

Acceptor receives proposal (x,n):

if n = nmax then
xlast := x
nlast := n
Send ack(x,n) to the proposer

Last accepted proposal

Largest request number ever received

Why persistently?
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Paxos: Spreading the Decision

• After a proposal is chosen, only the proposer knows about it!

• How do the other nodes get informed?

• The proposer could inform all nodes directly

– Only n-1 messages are required

– If the proposer fails, the others are not informed
(directly)…

• The acceptors could broadcast every time they
accept a proposal

– Much more fault-tolerant

– Many accepted proposals may not be chosen…

– Moreover, choosing a value costs O(n2) messages
without failures!

• Something in the middle?

– The proposer informs b nodes and lets them
broadcast the decision

(x,n) is
chosen!

Trade-off: fault-tolerance vs. message complexity

Accepted 
(x,n)!

(x,n) 
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Paxos: Agreement

Proof:

• Assume that there are proposals (y,n’) for which n’ > n and x ≠ y. 
Consider the proposal with the smallest proposal number n’

• Consider the non-empty intersection S of the two sets of nodes that 
function as the acceptors for the two proposals

• Proposal (x,n) has been accepted  Since n’ > n, the nodes in S must have
received prepare(y,n’) after (x,n) has been accepted

• This implies that the proposer of (y,n’) would also propose the value x
unless another acceptor has accepted a proposal (z,n*), z ≠ x and n < n* < 
n’. However, this means that some node must have proposed (z,n*), a
contradiction because n* < n’ and we said that n’ is the smallest proposal 
number!

Lemma

If a proposal (x,n) is chosen, then for every issued 
proposal (y,n’) for which n’ > n it holds that x = y
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Paxos: Theorem

Proof:

• Once a proposal (x,n) is chosen, each proposal (y,n’) that is sent 
afterwards has the same proposal value, i.e., x = y according to the lemma 
on the previous slide

• Since every subsequent proposal has the same value x, every proposal
that is accepted after (x,n) has been chosen has the same value x

• Since no other value than x is accepted, no other value can be chosen!

Theorem

If a value is chosen, all nodes choose this value
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Paxos: Wait a Minute…

• Paxos is great!

• It is a simple, deterministic algorithm that works in
asynchronous systems and tolerates f < n/2 failures

• Is this really possible…?

• Does Paxos contradict this lower bound…?

Theorem

A deterministic algorithm cannot guarantee
consensus in asynchronous systems even if

there is just one faulty node
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Paxos: No Liveness Guarantee

• The answer is no! Paxos only guarantees that if a value is chosen, the other
nodes can only choose the same value

• It does not guarantee that a value is chosen!

prepare(x,1)

acc(Ø,0)

propose(x,1)

prepare(y,2)

acc(Ø,0)

propose(y,2)

prepare(x,3)

acc(Ø,0)

prepare(y,4)

acc(Ø,0)

Time-out!

Time-out!

time
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Paxos: Agreement vs. Termination

• In asynchronous systems, a deterministic consensus algorithm cannot have
both, guaranteed termination and correctness

• Paxos is always correct. Consequently, it cannot guarantee that the
protocol terminates in a certain number of rounds

• Although Paxos may not terminate in theory, it is quite efficient in practice
using a few optimizations

Termination is sacrificed
for correctness…

How can Paxos
be optimized?
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Paxos in Practice

• There are ways to optimize Paxos by dealing with some practical issues

– For example, the nodes may wait for a long time until they decide to try to
submit a new proposal

– A simple solution: The acceptors send NAK if they do not accept a prepare
message or a proposal. A node can then abort immediately

– Note that this optimization increases the message complexity…

• Paxos is indeed used in practical systems!

– Yahoo!’s ZooKeeper: A management service for large distributed systems uses a
variation of Paxos to achieve consensus

– Google’s Chubby: A distributed lock service library. Chubby stores lock
information in a replicated database to achieve high availability. The database
is implemented on top of a fault-tolerant log layer based on Paxos




