Practice: Small Systems
Part 2, Chapter 3

‘\’gsg)‘o

Thomas Locher
Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

Concurrent Computation

e We started with...

e Multiple threads
— Sometimes called processes

¢ Single shared memory
e Objects live in memory

e Unpredictable asynchronous delays

¢ Inthe previous chapters, we focused on fault-tolerance
— We discussed theoretical results
— We discussed practical solutions with a focus on efficiency

¢ In this chapter, we focus on efficient concurrent computation!
— Focus on asynchrony and not on explicit failures

Overview

Introduction

Spin Locks
— Test-and-Set & Test-and-Test-and-Set
— Backoff lock
— Queue locks

Concurrent Linked List

— Fine-grained synchronization
— Optimistic synchronization
— Lazy synchronization

— Lock-free synchronization

Hashing
— Fine-grained locking
— Recursive split ordering

Example: Parallel Primality Testing

e Challenge

— Print all primes from 1 to 10°
e Given

— Ten-core multiprocessor

— One thread per processor
e Goal

— Get ten-fold speedup (or close)

* Naive Approach Problems with
— Split the work evenly this approach?
— Each thread tests range of 10°

1 1(|)9 2i109

R
©

Issues

e Higher ranges have fewer primes
e Yet larger numbers are harder to test
e Thread workloads
— Uneven
— Hard to predict
¢ Need dynamic load balancing

e Better approach
— Shared counter!
— Each thread takes a number

Counter Implementation

pubTlic class Counter {
private Tong value;

public Tong getAndIncrement() {
return value++;
}

What'’s the problem with
this implementation?

Procedure Executed at each Thread

(Counter counter = n%}

void primePrint() { .
long j = O; Shared counter object
while(j < 1010) {

j = counter.getAndIncrement();
ifCisPrime(j))
print(j);
}
}
Increment counter & test
if return value is prime
Problem

value...| 1 2 3 2

|

|

read write read write 1
1 2 2 3 :

|

|

I

read write
1 2

time

Counter Implementation

pubTlic class Counter {
private Tong value;
public Tong getAndIncrement() {

[temp = value;
value = temp + 1;

_ These steps must
return temp; be atomic!
} !

Recall: We can use Read-Modify-
Write (RMW) instructions!

We have to guarantee
mutual exclusion

Model: Where Things Reside

Local
variables

7

shared
memory

E.g., the shared
counter is here

Model

The model in this part is slightly more complicated

— However, we still focus on principles .
l.e., multiprocessors

What remains the same?
— Multiple instruction multiple data (MIMD) architecture
— Each thread/process has its own code and local variables
— There is a shared memory that all threads can access

What is new?

— Typically, communication runs over a shared bus
(alternatively, there may be several channels)

— Communication contention @
— Communication latency

— Each thread has a local cache a
<o

memory

ol
K

Revisiting Mutual Exclusion

e We need mutual exclusion for our counter
e We are now going to study mutual exclusion from a different angle
— Focus on performance, not just correctness and progress
e We will begin to understand how performance depends on our software

properly utilizing the multiprocessor machine’s hardware,
and get to know a collection of locking algorithms!

e What should you do if you can’t get a lock?
e Keep trying
— “spin” or “busy-wait” Our focus
— Good if delays are short
e Give up the processor
— Good if delays are long
— Always good on uniprocessor

Basic Spin-Lock

Lock introduces

sequential bottleneck Huh?
- No parallelism!

/\ q Lock suffers
‘ from contention

\ &

A = o1
. spin critical Resets lock
/ lock section upon exit

e

Reminder: Test&Set

public c1ass|AtomicBoo1ean!{
private boolean value;

java.util.concurrent.atomic

boolean prior = this.value;
this.value = true;
return prior;
} Get current value and set
value to true

Reminder: Test&Set

* Boolean value
e Test-and-set (TAS)
— Swap true with current value
— Return value tells if prior value was true or false
e Canreset just by writing false
e Also known as “getAndSet”

Test&Set Locks

e Locking
— Lock is free: value is false
— Lock is taken: value is true
e Acquire lock by calling TAS
— If result is false, you win
— If resultis true, you lose
e Release lock by writing false

Test&Set Lock Performance

public class TASLock implements Lock { Experiment

[Atomi cBoolean state = new AtomicBoolean(false); — nthreads

public void lock() { Lock state is AtomicBoolean — Increment shar.ed counter 1 million times
(while (state.getAndset()) {} How long should it take?

}

Keep trying until How long does it take?

Tl e nEl e 4 e EEE

state.set(false); 4
3
} Release lock by resetting state to false g
>
threads
Test&Test&Set Locks Test&Test&Set Lock
e How can we improve TAS? public class TTASLock implements Lock {
e Acrazy idea: Test before you test and set! AtomicBoolean state = new AtomicBoolean(false);
public void Tock() { . .

e Lurking stage while (true) { % Wait until lock looks free

— Wait until lock “looks” free V_Vh1 -Il e(state.get()) {1}

— Spin while read returns true (i.e., the lock is taken) 1 ff‘éiﬁiﬁ? = getw
e Pouncing state } ’ Then try to acquire it

— As soon as lock “looks” available }

— Read returns false (i.e., the lock is free)))

— Call TAS to acquire the lock public void unlock() {

state.set(false);

— If TAS loses, go back to lurking }

Performance Opinion

e Both TAS and TTAS do the same thing (in our old model) e TAS & TTAS locks

¢ So, we would expect basically the same results — are provably the same (in our old model)
— except they aren’t (in field tests)

e Obviously, it must have something to do with the model...

4 e Let’s take a closer look at our new model and try to find a reasonable
o explanation!
£ TTAS lock
=
ideal
>
threads
e Why is TTAS so much better than TAS? Why are both far from ideal?
Bus-Based Architectures Jargon Watch
Per-processor caches Shared bus ¢ Load request
* Small * Broadcast medium — When a thread wants to access data, it issues a load request
* Fast: 1 or 2 cycles * One broadcaster at a time e Cache hit
* Address and state information * Processors (and memory) “snoop”

— The thread found the data in its own cache
e (Cache miss
— The datais not found in the cache
— The thread has to get the data from memory

>

Random access memory
(10s of cycles)

Load Request Another Load Request

e Thread issues load request and memory responds e Another thread wants to access the same data. Get a copy from the cache!

data...? | got data! data...?

=

memory

Modify Cached Data Cache Coherence
e Both threads now have the data in their cache e We have lots of copies of data
e What happens if the red thread now modifies the data...? — Original copy in memory

— Cached copies at processors

e Some processor modifies its own copy
— What do we do with the others?
— How to avoid confusion?

| I data cache
< S—T >
=

What'’s up with the other copies? |

Write-Back Caches Invalidate

e Accumulate changes in cache e Let’s rewind back to the moment when the red processor updates its

¢ Write back when needed cached data
— Need the cache for something else ¢ It broadcasts an invalidation message = Other processor invalidates its
— Another processor wants it cache!

¢ On first modification Cache loses

— Invalidate other entries read
— Requires non-trivial protocol ... permission

e Cache entry has three states:
— Invalid: contains raw bits

— Valid: | can read but | can’t write

— Dirty: Data has been modified
— Intercept other load requests

D —

— Write back to memory before reusing cache

Invalidate Mutual Exclusion
e Memory provides data only if not present in any cache, so there is no need e What do we want to optimize?

to change it now (this is an expensive operation!) 1. Minimize the bus bandwidth that the spinning threads use
e Reading is not a problem = The threads get the data from the red process 2. Minimize the lock acquire/release latency

3. Minimize the latency to acquire the lock if the lock is idle

25 NS

cache data cache

< = >

TAS vs. TTAS Local Spinning while Lock is Busy

e TAS invalidates cache lines e While the lock is held, all contenders spin in their caches, rereading

e Spinners This is why TAS cached data without causing any bus traffic

rform rly...
— Always go to bus performs so poorly

e Thread wants to release lock
— delayed behind spinners!!!
e TTAS waits until lock “looks” free

— Spin on local cache

— No bus use while lock busy
e Problem: when lock is released < Bus >
— Invalidation storm ...

Huh?

On Release Time to Quiescence

e The lock is released. All spinners take a cache miss and call Test&Set! e Every process experiences a cache miss

— All state.get() satisfied sequentially ng_,
e Every process does TAS

— Caches of other processes are invalidated 0 “— 6
O

TAS! TAS!

e Eventual quiescence (“silence”) after

acquiring the lock n—*'

e The time to quiescence increases
linearly with the number of processors for a bus architecture!

time

>

threads

Mystery Explained Introduce Delay

¢ Now we understand why the TTAS lock performs much better than the o If the lock looks free, but | fail to get it, there must be lots of contention
TAS lock, but still much worse than an ideal lock! e It's better to back off than to collide again!
A , .
e Example: Exponential Backoff
o e Each subsequent failure doubles expected waiting time
£ TTAS lock

ideal m /1
> — l‘ —
threads

waiting time }

4d d spin lock
¢ How can we do better?
Exponential Backoff Lock Backoff Lock: Performance
public class Backoff implements Lock { e The backoff lock outperforms the TTAS lock!
AtomicBoolean state = new AtomicBoolean(false); e Butitis still not ideal...
public void Tock({ del
(int delay = MIN_DELAY;— Fix minimum delay
while (true) { A
while(state.get()) {}
if (!lock.getAndset())
return; Back off for £ TTAS lock
sleep(random() % delay); random duration et
if (delay < MAX_DELAY)L__ Backoff lock
delay = 2 * delay; ~ Double maximum :
} delay until an upper ideal
} bound is reached
>
// unlock() remains the same threads

Backoff Lock: Evaluation

Good
— Easy to implement
— Beats TTAS lock
e Bad
— Must choose parameters carefully
— Not portable across platforms

¢ How can we do better?
¢ Avoid useless invalidations

— By keeping a queue of threads
e Each thread

— Notifies next in line

— Without bothering the others

ALock: Acquiring the Lock

¢ To acquire the lock, each thread atomically increments the tail field
e If the flag is true, the lock is acquired
e Otherwise, spin until the flag is true

The lock

acquired s
is mine!

next

flags

ALock: Initially

e The Anderson queue lock (ALock) is an array-based queue lock
e Threads share an atomic tail field (called next)

idle
next

Alock: Contention

¢ If another thread wants to acquire the lock, it applies get&increment

=

acquiring

e The thread spins because the flag is false

acquired

next

flags

ALock: Releasing the Lock

¢ The first thread releases the lock by setting the next slot to true
e The second thread notices the change and gets the lock

released acquired The!OCk
is mine!

AlLock: Performance

¢ Shorter handover than backoff
e Curve is practically flat

e Scalable performance

¢ FIFO fairness

TTAS lock

time

ALock
ideal

threads

Alock

One flag per thread

public class Alock implements L
[boolean[] flags = {true,fa]se,...,fa]se}J
AtomicInteger next = new AtomicInteger(0);
[ThreadLocal<Integer> mySlot;L—

Thread-local variable
public void Tock() {
[myslot = next.getAndIncrement();L__
while (!flags[myslot % n]) {} e e e Al
flags[mySlot % n] = false;
3

public void unlock() {
(fTags[(mySTot+1) % n] = true;L_
¥ Tell next thread to go

}

Alock: Evaluation

e Good
— First truly scalable lock
— Simple, easy to implement
e Bad
— One bit per thread
— Unknown number of threads?

How can we deal
with this?

CLH Lock

e The CLH lock uses a linked list instead of an array!

e Each thread’s status is recorded in a QNode object with a Boolean locked
field: if the field is true, the thread has acquired the lock or is waiting for it

idle

false = lock

y is free
Queue tail

tail

-q

CLH Lock: Contention
e If another thread wants to acquire the lock, it applies swap

=

acquiring

¢ The thread spins because the flag is true

acquired

tail

true true

CLH Lock: Acquiring the Lock

e The thread sets the locked field of its Qnode to true

¢ The thread applies swap to the tail = Its own node is now the tail and it
acquires a reference to the predecessor’s QNode

acquired

The lock
is mine!

QNode

tai

true

CLH Lock: Implicit Linked List

¢ Note that the list is ordered implicitly!

acquired acquiring

tail

CLH Lock: Spinning on Cache CLH Lock: Release Lock

¢ Note that the red thread actually spins on a cached copy .

The first thread releases the lock by setting its QNode to false

@ e The second thread notices the change and gets the lock

released acquired

acquired

acquiring

The lock
is mine!
tail tail
‘ ;
— N
CLH Queue Lock CLH Queue Lock
public class QNode { public class CLHLock implements Lock { .
AtomicBoolean locked = new Atomic Boolean(true): AtomicReference<QNode> tail;f— Tail of the queue

} ThreadLocal<QNode> myNode = new ThreadLocal<Qnode>();
public void lock() { Thread-local

[Qnode pred = tail.getAndSet(myNode) ; QNode
while(pred.Tocked) {}
} Swap in my node

pubTic void unlock() {
myNode. locked.set(false);
(myNode = pred;L___
. Recycle predecessor’s node

CLH Lock: Evaluation

e Space usage

— L =number of locks

— N =number of threads
e Alock

— O(LN)
e CLH lock

— O(L+N)

e Good
— Lock release affects predecessor only
— Small, constant-sized space

e Bad

— Doesn’t work for uncached NUMA architectures

?7??

CLH Lock: Problem

Each thread spins on predecessor’s memory

The predecessor could be far away ...

What we want is that
— each thread spins on local memory only
— and the overhead is still small (constant size)

Idea: Spin on own flag, just like the Anderson queue lock!

NUMA Architectures

¢ Non-Uniform Memory Architecture
e |llusion
— Flat shared memory
e Truth
— No caches (sometimes)
— Some memory regions faster than others

Spinning on local memory is fast: Spinning on remote memory is slow:

©
©
<o

MCS Lock

e The lock is again represented as a linked list of QNodes, one per thread
e The tail of the queue is shared among all threads

idle

Queue tail

tail

— |11

MCS Lock: Acquiring the Lock

¢ To acquire the lock, the thread places its QNode at the tail of the list
by swapping the tail to its QNode

e If there is no predecessor, the thread acquires the lock

acquired

The lock
is mine!
Swap tail

—
In

false = lock
is free

(allocate QNode)

MCS Lock: Releasing the Lock

e The first thread releases the lock by setting its successor’s QNode to false

released acquired

The lock
is mine!
tail

_

MCS Lock: Contention

¢ If another thread wants to acquire the lock, it again applies swap
e The thread spins on its own QNode because there is a predecessor

=

acquired acquiring

MCS Queue Lock

pubTic class QNode {
boolean locked = false;
QNode next = null;

}

MCS Queue Lock

public class MCSLock implements Lock {
AtomicReference<QNode> tail;

pubTlic void Tock() {
QNode gnode = new QNode();
[QNode pred = tail.getAndSet(gnode);
[1f (pred != null) {

gnode.locked = true;

pred.next = gnode; o

while (gnode.locked) {} Fix if queue was
} non-empty

}

MCS Lock: Unlocking Explained

e Assoon as the pointer to the successor is set, the purple thread can
release the lock

Set my successor’s
QNode to false!

released acquired

The lock
is mine!
tail

_

Add my node to the tail

MCS Lock: Unlocking

If there is a successor, unlock it. But, be cautious!

that another thread is active because tail does not point to its QNode!

releasing acquiring

Swap tail
e p——

Waiting...

_

MCS Queue Lock

public void unlock({

[if (gnode.next == null) {f
it (tail.cAs(gnode, null)) If really no successor,
return;

while (gnode.next == null) {}]

Missing successor?

return

(gnode.next.Tocked = false; Otherwise, wait for
} successor to catch up

} Pass lock to successor

Even though a QNode does not have a successor, the purple thread knows

Abortable Locks

¢ What if you want to give up waiting for a lock?
e For example

— Time-out

— Database transaction aborted by user

¢ Back-off Lock
— Aborting is trivial: Just return from lock() call!
— Extra benefit: No cleaning up, wait-free, immediate return

¢ Queue Locks
— Can'’tjust quit: Thread in line behind will starve
— Need a graceful way out...

Abortable MCS Lock

* A mechanism is required to recognize and remove aborted threads
— Athread can set a flag indicating that it aborted

— The predecessor can test if the flag is set Spinning on
remote object...?!

— If the flag is set, its new successor is the successor’s successor
— How can we handle concurrent aborts? This is not discussed in this lecture

acquired aborted spinning

sl

SEE]-—

Problem with Queue Locks

acquired aborted spinning

ol

released spinning

—~[=8 -+

Composite Locks

e Queue locks have many advantages
— FIFO fairness, fast lock release, low contention
but require non-trivial protocols to handle aborts (and recycling of nodes)
e Backoff locks support trivial time-out protocols
but are not scalable and may have slow lock release times

e A composite lock combines the best of both approaches!
e Short fixed-sized array of lock nodes

e Threads randomly pick a node and try
to acquire it

¢ Use backoff mechanism to acquire a node _* :
e Nodes build a queue

e Use a queue lock mechanism to acquire the lock

One Lock To Rule Them All? Handling Multiple Threads

e TTAS+Backoff, MCS, Abortable MCS... e Adding threads should not lower the throughput
e Each better than others in some way — Contention effects can mostly be fixed by Queue locks
e There is not a single best solution
e Lock we pick really depends on e Adding threads should increase throughput
- the application — Not possible if the code is inherently sequential
— the hardware — Surprising things are parallelizable!

— which properties are important
e How can we guarantee consistency if there are many threads?

Coarse-Grained Synchronization Exploiting Parallelism

e Each method locks the object e We will now talk about four “patterns”
— Avoid contention using queue locks — Bag of tricks ...
— Mostly easy to reason about — Methods that work more than once ...

— This is the standard Java model (synchronized blocks and methods)

e The goal of these patterns are
e Problem: Sequential bottleneck — Allow concurrent access

— Threads “stand in line” — If there are more threads, the throughput increases!
— Adding more threads does not improve throughput

— We even struggle to keep it from getting worse...

¢ So why do we even use a multiprocessor?
— Well, some applications are inherently parallel...
— We focus on exploiting non-trivial parallelism

Pattern #1: Fine-Grained Synchronization Pattern #2: Optimistic Synchronization

¢ Instead of using a single lock split the concurrent object into e Assume that nobody else wants to access your part of the concurrent
independently-synchronized components object
e Search for the specific part that you want to lock without locking any
¢ Methods conflict when they access other part on the way
— The same component e Ifyou find it, try to lock it and perform your operations
— At the same time — If you don’t get the lock, start over!

e Advantage

— Usually cheaper than always assuming that there may be a conflict due to a
concurrent access

Pattern #3: Lazy Synchronization Pattern #4: Lock-Free Synchronization

e Postpone hard work! e Don’t use locks at all!
— Use compareAndSet() & other RMW operations!
e Removing components is tricky
— Either remove the object physically * Advantages
— Or logically: Only mark component to be deleted — No scheduler assumptions/support

e Disadvantages
— Complex
— Sometimes high overhead

Illustration of Patterns The List-Based Set

¢ In the following, we will illustrate these patterns using a list-based set ¢ We assume that there are sentinel nodes at the beginning and end of the
— Common application linked list
— Building block for other apps
Ll =[5> |[5=>{[5—=>]]
* Asetis a collection of items
— No duplicates e Add node b:

¢ The operations that we want to allow on the set are
- add(x) puts X into the set
- remove(x) takes X out of the set
- contains (X) testsif X is in the set

Coarse-Grained Locking

e Asimple solution is to lock the entire list for each operation
— E.g., by locking the first sentinel

([3—(([3—{T]

e Simple and clearly correct!
e Works poorly with contention...

([3— (Il S— (13—
o] 4

e Remove node b:

([3— LT3

Fine-Grained Locking

e Split object (list) into pieces (nodes)
— Each piece (each node in the list) has its own lock
— Methods that work on disjoint pieces need not exclude each other

CB#EEEEB_’ED
e Hand-over-hand locking: Use two locks when traversing the list
— Why two locks?

Problem with One Lock

e Assume that we want to delete node c
e We lock node b and set its next pointer to the node after c

a -—P‘b cbc ——:'

e Another thread may concurrently delete node b by setting the next
pointer from node a to node c

Hooray, I'm

6 not deleted!

Hand-Over-Hand Locking: Removing Nodes

e Assume that two threads want to remove the nodes b and c
e One thread acquires the lock to the sentinel, the other has to wait

(=G~

Remove
|
Remove node c!

= e

Insight

If a node is locked, no one can delete the node’s successor

If a thread locks
— the node to be deleted
— and also its predecessor
then it works!

That’s why we (have to) use two locks!

Hand-Over-Hand Locking: Removing Nodes

The same thread that acquired the sentinel lock can then lock the next
node

(D—=GIE3-+CIE3—C3—D

Remove
|
Remove node c!

-

Hand-Over-Hand Locking: Removing Nodes

e Before locking node b, the sentinel lock is released
¢ The other thread can now acquire the sentinel lock

LL =l g=>le]g=>{ ==]

Remove

OV E node c!

node b!

Hand-Over-Hand Locking: Removing Nodes

¢ Node c can now be removed
e Afterwards, the two locks are released

[]—>[a-]—>[1_€[c-]-;>'[)

Remove
node c!

Uk

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e Before locking node c, the lock of node a is released
e The other thread can now lock node a

(D= GE-»EE—CaE—+D

Remove

P OvE node c!

node b!

Hand-Over-Hand Locking: Removing Nodes

¢ The other thread can now lock node b and remove it

(T =z -l—»&{ AyCD

Remove
node b!

List Node

public class Node { |tem of interest
public T item;
public int key; = Usually a hash code

ublic Node next;
} P Reference to next node

Remove Method

(while (curr.key <= key) {———— Search key range
(if (item == curr.item) {\>

pred.next = curr.next; If item found,
return true; remove the node
\J J

(pred.unTock(Q; \>
pred = curr; Unlock pred and

curr = curr.next;
\curr.lock();)

lock the next node

}
[return false;— Return false if the element is not present

Remove Method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;

try { Start at the head and lock it
pred = this.head;
aliteitl, Leekl - Lock the current node
curr = pred.next;
[curr.'lock(); ?

Traverse the list and

U remove the item

. On the
Hfinally { next slide!
curr.unlock(Q; Make sure that the
pred.unlock(); locks are released

Why does this work?

e Toremove node e
— Node e must be locked
— Node e’s predecessor must be locked

Therefore, if you lock a node
— It can’t be removed
— And neither can its successor

To add node e
— Must lock predecessor
— Must lock successor

Neither can be deleted
— Is the successor lock actually required?

Drawbacks Optimistic Synchronization

¢ Hand-over-hand locking is sometimes better than coarse-grained lock e Traverse the list without locking!
— Threads can traverse in parallel
— Sometimes, it’s worse!

e However, it’s certainly not ideal

— Inefficient because many locks must be acquired and released Ll_]-_>[a] ’ [b] ’ [d] ’ [I]

e How can we do better?

Add Found the
node c! position!
Optimistic Synchronization: Traverse without Locking Optimistic Synchronization: What Could Go Wrong?
* Once the nodes are found, try to lock them What could * Another thread may lock nodes a and b and remove b before node c is
e Check that everything is ok go wrong...? added > If the pointer from node b is set to node c, then node c is not

added to the list!

é6

L =l 5=l 5= 1] N,

[b

3D

Add Lock them! Add
node c! node c!

Remove b!

Is everything ok?

Optimistic Synchronization: Validation #1

¢ How can this be fixed?

e After locking node b and node d, traverse the list again to verify that b is
still reachable

(D—=»GE3-+C3—C—D)

Add

node c! Node b can still

be reached!

Optimistic Synchronization: Validation #2

¢ How can this be fixed?

e After locking node b and node d, also check that node b still points to
node d!

(DG~ CE—EE—D

Add

node c! The pointer is

still correct...

Optimistic Synchronization: What Else Could Go Wrong?

e Another thread may lock nodes b and d and add a node b’ before node ¢
is added - By adding node c, the addition of node b’ is undone!

.
Ll =l 5=0 d | J
Add Add b’!

node c!

Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
Node node = head;
while (node.key <= pred.key) {

['If (node == pr'ed) ?— If pred is reached,
return pr‘ed.next == Curr,; test if the

node = node.next; .
1 successor is curr

[return false;L_
} Predecessor not reachable

Optimistic Synchronization: Remove

private boolean remove(Item item) {
int key = item.hashcode();
(while (true) {—

Retry on synchronization

Node pred = this.head; conflict
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item) Stop if we find the item
[break;

pred = curr;
curr = curr.next;

}

Optimistic Synchronization

Why is this correct?

— If nodes b and c are both locked, node b still accessible, and node c still the
successor of node b, then neither b nor ¢ will be deleted by another thread

— This means that it’s ok to delete node c!

Why is it good to use optimistic synchronization?
— Limited hot-spots: no contention on traversals
— Less lock acquisitions and releases

When is it good to use optimistic synchronization?

— When the cost of scanning twice without locks is less than the cost of
scanning once with locks

Can we do better?
— It would be better to traverse the list only once...

Optimistic Synchronization: Remove

try { Lock both nodes
pred.lock(); curr.lock();

==
if (validate(pred,curr)) {fF——— Check for

it (curr.item == item) { synchronization conflicts
pred.next = curr.next;
return true;

} else | Remove node if

return false; target found
}

}

} finally {
pred.unlock();
curr.unlock();

Always unlock the nodes

}

}
}

Lazy Synchronization

Key insight
— Removing nodes causes trouble
— Do it “lazily”

¢ How can we remove nodes “lazily”?
— First perform a logical delete: Mark current node as removed (new!)

—G3> ~ —CE3>

— Then perform a physical delete: Redirect predecessor’s next (as before)

Lazy Synchronization

e All Methods
— Scan through locked and marked nodes
— Removing a node doesn’t slow down other method calls...

¢ Note that we must still lock pred and curr nodes!

e How does validation work?
— Check that neither pred nor curr are marked
— Check that pred points to curr

Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {
return [!pred.marked & !curr.marked) &&

pred.next == curr);
} \ /

Predecessor still
points to current

—— Nodes are not
logically removed

Lazy Synchronization

e Traverse the list and then try to lock the two nodes
e Validate!

e Then, mark node c and change the predecessor’s next pointer

o _coes

Remove Check that b and c
node c! are not marked and
that b points to ¢

(D—GII3~G

Lazy Synchronization: Remove

public boolean remove(Item item) {
int key = item.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

}

This is the same as before!

Lazy Synchronization: Remove

try {
pred.lock(); curr.lock();
(if (validate(pred,curr)) {F—— Check for

it (curr.item == item) synchronization conflicts
curr.marked = true;

pred.next = curr.next;

return true;
} else { If the target is found,

return false; mark the node and
3 remove it

ks

} finally {
pred.unTock();
curr.unlock(Q;

}
}
}

Evaluation

e Good
— The list is traversed only once without locking
— Note that contains() doesn’t lock at all!

— This is nice because typically contains() is called much more often than add()
or remove()

— Uncontended calls don’t re-traverse

e Bad
— Contended add() and remove() calls do re-traverse
— Traffic jam if one thread delays

e Traffic jam?
— If one thread gets the lock and experiences a cache miss/page fault, every
other thread that needs the lock is stuck!
— We need to trust the scheduler....

Lazy Synchronization: Contains

public boolean contains(Item item) {
int key = item.hashCode();
Node curr = this.head;

while (curr.key < key) { Traverse without locking
CUFF = CUPF.next (nodes may have been

1 removed)

[return curr.key == key && !curr.marked;

Is the element present and not marked?

Reminder: Lock-Free Data Structures

e If we want to guarantee that some thread will
eventually complete a method call, even if other
threads may halt at malicious times, then the
implementation cannot use locks!

e Next logical step: Eliminate locking entirely!
e Obviously, we must use some sort of RMW method
e Let’s use compareAndSet() (CAS)!

Remove Using CAS

e First, remove the node logically (i.e., mark it)
e Then, use CAS to change the next pointer
e Does this work...?

[I a b

G Eths

Remove
node c!

Solution

e Mark bit and next pointer are “CASed together”

¢ This atomic operation ensures that no node can cause a conflict by adding
(or removing) a node at the same position in the list

N4 %

.II..... *
.

Node c
has been
removed!

Remove Using CAS: Problem

¢ Unfortunately, this doesn’t work!
e Another node d may be added before node c is physically removed
* Asaresult, node d is not added to the list...

[4

(D—GLI3~G

Add
node d!

Remove

= &

Solution

e Such an operation is called an atomic markable reference
— Atomically update the mark bit and redirect the predecessor’s next pointer

e [InJava, there’s an AtomicMarkableReference class
— In the package Java.util.concurrent.atomic package

Updated atomically

Changing State Removing a Node

[pri vate Object ref; The reference to the next e [f two threads want to delete the nodes b and ¢, both b and c are marked
private boolean mark; Object and the mark bit e The CAS of the red thread fails because node b is marked!

e (If node b is yet not marked, then b is removed first and there is no

public synchronized boolean compareAndSet(

object expectedref, Object updateref, conflict)
boolean expectedvark, boolean updatemark) { CAS
[if (ref == expectedrRef && mark == expectedMark){ Gj—b[a -}Gj
ref = updateRef;
mark = updateMark;
} If the reference and the mark are as
} expected, update them atomically Remove geovE
ol node c!
Traversing the List Lock-Free Traversal
e Question: What do you do when you find a “logically” deleted node in e If alogically deleted node is encountered, CAS the predecessor’s next
your path when you’re traversing the list? field and proceed (repeat as needed)

CAS

C—(a Pl | [5>([)

CAS!

Performance

¢ The throughput of the presented techniques has been measured for a
varying percentage of contains() method calls
— Using a benchmark on a 16 node shared memory machine

Ops/sec (32 threads)
8-106 Lock-free
Lazy
106 Coarse Grained
L Fine Grained
0

% contains()

High Ratio of contains()

e If the ratio of contains() is high, again both the lock-free linked list and the
linked list with lazy synchronization perform well even if there are many
threads

Ops/sec (90% reads)

12107 T T T T T T
1107 + K x iy 1
8-10° - xR | B " K
' - g N “K Lock-free

6106 i{ll B B | Lazy
4106 ,;ffj

[
2106 -

%‘ﬁ—%‘—ﬁ—ﬁ"*’m“* Coarse Grained
Fine Grained
0 5 10 15 20 25 30

Threads

Low Ratio of contains()

e |f the ratio of contains() is low, the lock-free linked list and the linked list
with lazy synchronization perform well even if there are many threads

Ops/sec (50% read)

35106 T T T T T T
*
3-10° E %%%% 71 Lock-free
106 L v Y / -
2.5-10 X * /.(:%; e e I
2.106 L oo BN %}K i
o Sl
1510 M _
n
1-106 1% 1
5-105 - . .
e 4+ttt Coarse Grained
o I S 4 W Ay - O I S a OOl QD Fine Grained
0 5 10 15 20 25 30
Threads

“To Lock or Not to Lock”

e Locking vs. non-blocking: Extremist views on both sides
e Itis nobler to compromise by combining locking and non-blocking
techniques

— Example: Linked list with lazy synchronization combines blocking add() and
remove() and a non-blocking contains()

— Blocking/non-blocking is a property of a method

Linear-Time Set Methods Hashing

¢ We looked at a number of ways to make highly-concurrent list-based sets e A hash function maps the items to integers
— Fine-grained locks — h:items — integers
— Optimistic synchronization e Uniformly distributed

— Lazy synchronization

o — Different items “most likely” have different hash values
— Lock-free synchronization

e What's not so great? * InJava there is a hashCode() method

— add(), remove(), contains() take time linear in the set size

e We want constant-time methods! How...?
— At least on average...

Sequential Hash Map Resizing
e The hash table is implemented as an array of buckets, each pointing to a e The array size is doubled and the hash function adjusted
list of items
/

0 p—(16] ——(4 [——{28] | 0 16| ——] 4 [(28] |

e NI e e N
buckets-<

2 h(k) =k mod 4 2 h(k) =k mod 8
\3°——~|7|'—|—~|15| | 31— 7| ——{15] |
4 New hash function
)] o Grow the array
¢ Problem: If many items are added, the lists get long = Inefficient 5
lookups!

¢ Solution: Resize!

Resizing Hash Sets

e Some items have to be moved to different buckets! e A hash set implements a set object
— Collection of items, no duplicates
— add(), remove(), contains() methods

0 ——{16 | —
* More coding ahead! L 10 |
14—] i ¥
2 h(k) =k mod 8
1714
41— 4| —1—{28]| |
5
6
7 1s] |
Simple Hash Set Simple Hash Set: Evaluation
public class SimpleHashSet { e Wejustsaw a
[protected LockFreeList[] table;—— Array of lock-free lists — Simple
. . . ———Initial si - .
public SimpleHashSet(int p nansize Lockfree
table = new LockFreeList[capacity]; — Concurrent
(for (int 1 = 0; i < capacity; i++) Initialization hash-based set implementation
table[i] = new LockFreeList();
}
\:

e But we don’t know how to resize...

public boolean add(Object key) {
(int hash = key.hashCode() % table.length;
(return table[hash].add(key);

e |s Resizing really necessary?

— Yes, since constant-time method calls require constant-length buckets and a
table size proportional to the set size
Use hash of object to pick a bucket — As the set grows, we must be able to resize
and call bucket’s add() method

Set Method Mix Coarse-Grained Locking

e Typical load e If there are concurrent accesses, how can we safely resize the array?
— 90% contains()
— 9%add () e As with the linked list, a straightforward solution is to use coarse-grained
— 1% remove() locking: lock the entire array!

e Growing is important, shrinking not so much

e This is very simple and correct
* When do we resize? e However, we again get a sequential bottleneck...
e There are many reasonable policies, e.g., pick a threshold on the number
of items in a bucket

¢ Global threshold

— When, e.g., 2 % buckets exceed this value
¢ Bucket threshold

— When any bucket exceeds this value

e How about fine-grained locking?

Fine-Grained Locking Fine-Grained Locking: Resizing

e Each lock is associated with one bucket e Acquire all locks in ascending order and make sure that the table
reference didn’t change between resize decision and lock acquisition!

0 g—{a|—r—18] | o g—{a|——18] |
Lo | ——17] | Lo [——17] |

2 h(k) =k mod 4 2 h(k) =k mod 4

e B s o EFEN s B s e EEN

e After acquiring the lock of the list, insert the item in the list! Table reference
didn’t change?

Fine-Grained Locking: Resizing Fine-Grained Locking: Resizing

¢ Allocate a new table and copy all elements e Stripe the locks: Each lock is now associated with two buckets
e Update the hash function and the table reference

-.Elo—l—>17||
— ¢ o | 7] | g e g N K o VA B

h(k) =k mod 4] h(k) = k mod 8
L

s T 5w

s] il I

7T =

Observations Fine-Grained Hash Set
e We grow the table, but we don’t increase the number of locks public class FGHashSet { A lock
— Resizing the lock array is tricky ... prOteCteg RangeLOCkH locks— A:‘:'aayy (t))f I;fcls(ets
L. . . L ;
e We use sequential lists (coarse-grained locking) protecte TEEL) S o
— No lock-free list public FGHashsSet(int capacity) {
— If we're locking anyway, why pay? table = new List[capacity];
Tock = new RangeLock[capacity];
for (int i = 0; i < capacity; i++) Initially the same
lock[i] = new RangeLock(); number of locks
table[i] = new LinkedList(Q); and buckets
3

Fine-Grained Hash Set: Add Method

public _boolean add(object ke Acquire the
[int keyHash = key.hashCodé%%_i—T;z;?%gﬁgzﬁqﬁghtth
synchronized(lock[keyHash]) {
[int tableHash = key.hashCode() % table.length;
return table[tableHash].add(key);
}
¥ Call the add() method of
the right bucket

Fine-Grained Locks: Evaluation

e We can resize the table, but not the locks

¢ Itis debatable whether method calls are constant-time in presence of
contention ...

¢ Insight: The contains() method does not modify any fields
— Why should concurrent contains() calls conflict?

Fine-Grained Hash Set: Resize Method

public void resize(int depth, List[] oldTable) {
[synchrom’zed (lock[depth]) {]
if (oldTable == this.table) {
[1' nt next = dept :

Resize() calls
resize(0,this.table)

if (next < lock.Tength)
resize(next, oldTable);

else
[sequentialResize();

Acquire the next
lock and check
that no one else
has resized

}

} Recursively acquire

the next lock
} Once the locks are

} acquired, do the work

Read/Write Locks

pubTic interface ReadwriteLock {

Lock readLock(); =~ Return the associated read lock
Lock writeLock();

} Return the associated write lock

Lock Safety Properties Read/Write Lock: Liveness

No thread may acquire the write lock ¢ How do we guarantee liveness?
— while any thread holds the write lock
— orthe read lock

No thread may acquire the read lock e Solution: FIFO Read/Write lock
— while any thread holds the write lock

— If there are lots of readers, the writers may be locked out!

— As soon as a writer requests a lock, no more readers are accepted
Concurrent read locks OK — Current readers “drain” from lock and the writers acquire it eventually

This satisfies the following safety properties
— If readers > 0 then writer == false
— If writer = true then readers ==

Optimistic Synchronization Stop The World Resizing

e What if the contains() method scans without locking...? e The resizing we have seen up till now stops all concurrent operations
e Can we design a resize operation that will be incremental?

e Ifit finds the key We won’t discuss e We need to avoid locking the table...

— Itis ok to return true! QR iectlire

How...?
= Actually requires a proof... e We want a lock-free table with incremental resizing!
e What if it doesn’t find the key?

— It may be a victim of resizing...
— Getaread lock and try again!

— This makes sense if is expected (?) that the key is there and resizes are rare...

Lock-Free Resizing Problem

¢ In order to remove and then add even a single item, “single location CAS’

is not enough...

o[—{ 16| —
14— |
2

el e B s e T
alg—la 28] |

Recursive Split Ordering

We need to extend the table!

e Example: The items 0 to 7 need to be hashed into the table

e Recursively split the list the buckets in half:

1/4 1/2

3/4

3 [7 11

(o {2 {2 BH{e B L F-{5]
[A
20-——/

¢ The list entries are sorted in an order that allows recursive splitting

How...?

Idea: Don’t Move the Items

Move the buckets instead of the items!

Keep all items in a single lock-free list

Buckets become “shortcut pointers” into the list

|16 |~ 4

||28

o | =17] 15]

Recursive Split Ordering

Note that the least significant bit (LSB) is 0 in the first half and 1 in the
other half! The second LSB determines the next pointers etc.

HIRRR

LSB=0
A

LSB=1
A

[

|

|

0 [4 |

2 |6 |

>

1 [s |

3 L7 |

!
LSB =00

1
LSB =10

T
LSB=01

i
LSB=11

Split-Order

e |f the table size is 2':
— Bucket b contains keys k = b mod 2
— The bucket index consists of the key's i least significant bits

¢ When the table splits:
— Some keys stay (b = k mod 2*1)
— Some keys move (b+2' = k mod2i*1)

e If a key moves is determined by the (i+1) bit
— counting backwards

Split Ordered Hashing

e After aresize, the new pointers are found by searching for the right index

Order according to reversed bits

000 001 010 011

0 4 |4 2 |4 6
O/J—H*' 7
X E—

3-

110 111

3 [7 11

2 pointers to some nodes!

e A problem remains: How can we remove a node by means of a CAS if two
sources point to it?

A Bit of Magic

¢ We need to map the real keys to the split-order
e Look at the binary representation of the keys and the indices
e The real keys:

Lo a2 fsfftafils e lll7]l

1] |
000 1001, 010 110 001 101 011 111

e Split-order: Real key 1 is at index 4!

Lo [10 2 1] e TN O s 010 (311 [(Z 1]

000 001 010 011 m 101 110 111

e Just reverse the order of the key bits!

Sentinel Nodes

¢ Solution: Use a sentinel node for each bucket

¢ We want a sentinel key for i ordered
— before all keys that hash to bucket i
— after all keys that hash to bucket (i-1)

Initialization of Buckets Adding Nodes

e We can now split a bucket in a lock-free manner using two CAS() calls e Example: Node 10 is added
e Example: We need to initialize bucket 3 to split bucket 1! e First, bucket 2 (= 10 mod 4) must be initialized, then the new node is

0 ¢
1
2
Recursive Initialization Lock-Free List
e ltis possible that buckets must be initialized recursively private int makeRegularkKey(int key) {

(return reverse(key | 0x80000000);— >ethigh-order bit

e Example: When node 7 is added, bucket 3 (= 7 mod 4) is initialized and) il e —

then bucket 1 (= 3 mod 2) is also initialized

private int makeSentinelkey(int key) {

(return reverse(key);— Simply reverse
} (high-order bit is 0)

n = number of nodes

¢ Note that = log n empty buckets may be initialized if one node is added,
but the expected depth is constant!

Split-Ordered Set

pubTlic class SoOSet{ ..) .
[protected LockFreeList|] tab'le;? Jilb el s

(protected AtomicInteger tableSize; (Slfdes 108'_1_16) ‘_N'th

| protected AtomicInteger setSize; minor modifications
Track how much of

table is used and the

set size so we know
when to resize

(public SoSet(int capacity) f{
table = new LockFreeList[capacity];
table[0] = new LockFreeList(Q);
tableSize = new AtomicInteger(2);
_ setSize = new AtomicInteger(0);

Initially use 1 bucket
and the size is zero

Recall: Resizing & Initializing Buckets

e Resizing
— Divide the set size by the total number of buckets

— If the quotient exceeds a threshold, double the tableSize field up to a fixed
limit

¢ Initializing Buckets
— Buckets are originally null
— If you encounter a null bucket, initialize it

— Go to bucket’s parent (earlier nearby bucket) and recursively initialize if
necessary

— Constant expected work!

Split-Ordered Set: Add

public boolean add(Object object) {

}

(int hash = object.hashCode(); Pick a bucket
int bucket = hash % tableSize.get(Q; Non-sentinel
int key = makeRegularKkey(hash);— _ split-ordered key

LockFreeList 1ist = getBucketList(bucket);

if (!list.add(object,key)) Get pointer to
return false; P

resizecCheck(); Try to add with bucket’s sentinel,
W reversed key initializing if
Resize if necessary
necessary

Split-Ordered Set: Initialize Bucket

public void initializeBucket(int bucket) {

(int parent = getParent(bucket); Find parent,
if (table[parent] == null)

Lo o recursivel
(initializeBucket(parent); y

int key = makeSentinelKey(bucket); g'"'t'a"’e 1GGREEE

Prepare key for
new sentinel

LockFreeList Tist = new
LockFreeList(table[parent],key);

.

Insert sentinel if not present and
return reference to rest of list

Correctness

e Split-ordered set is a correct, linearizable, concurrent set

implementation

o Constant-time operations!

- It takes no more than O(1) items between two dummy nodes on average
- Lazy initialization causes at most O(1) expected recursion depth in

initializeBucket()

Empirical Evaluation

e Expected bucket length

— The load factor is the capacity
of the individual buckets

e Varying The Mix
- Increasing the number of updates

.g lock-free
=
Q.
(@)
- locking
>
Load factor
(]
£
< lock-free
) N locking
. >
More reads More updates

Empirical Evaluation

e Evaluation has been performed on a 30-processor Sun Enterprise 3000
e Lock-Free vs. fine-grained (Lea) optimistic locking

* Inanon-multiprogrammed environment

e 10° operations: 88% contains(), 10% add(), 2% remove()

No work: Busy:
g lock-free g
= = lock-free
3 3
8 locking /aﬁvvcl)
ockin
= p e
threads threads

Additional Performance

e Additionally, the following parameters have been analyzed:
— The effects of the choice of locking granularity
— The effects of the bucket size

Number of Fine-Grain Locks

ops/ms

2500

2000

Lock-free vs. Locks

(Lea = fine-grained optimistic locking) 5500 - - T - . .
5000 | . % i
. -
r B G - o Lea, 64 locks B 4500 F W 4
Lea, 128 locks 4000 - . New |
Lea, 32 locks
J 3500 1]
£ 3000 -
Lea, 16 locks =
g 2500 4
2000 : 1
- I NP e
Lea, 8 locks 1500 i
Lea, 256 locks Lea
1000 .
500 i
o 1 1 1 1 1 1 1 0 1 1 1 1 1
= S 2 £ bt 3 B £ a g g R 2
threads threads

Hash Table Load Factor

ops/ms

6000

5000

4000

3000

2000

1000

Varying Operations

(Idad factor = nodes ber bdcket) '

e

New, load factor=8 =
_m- g New, load factor=12 -~

et Lea, load factor=1 --o--

S
Lea, load factor=4 --o---

i - e ¢)
®---.e Lea,load factor=8 --e--
<@-© [ea, load factor=12 ---0---

1

New, load factor=1 ——+— |

New, load factor=4 -

8000 T T T

7000 ¢

6000
5000 |-

4000

ops/ms

3000

2000

1000

I\I]ew. 8Ithrcadls +
New, 16 threads %
New, 32 threads *
New, 48 threads a

Lea, 8 threads - o
Lea, 16 threads - - -

lLea, 32 threads o

lea, 48 threads &~

(=]
wy

threads

90

0;0:100

10;0:90
20:0;80
30:0;70

1 1 Il 1 1 1 1
N4 R = = 2 =2 <
o n R «) = S S S
R = = 2 e S | e}
S = = S S = =4 =1 =
= irat & = 7 > =Y % =

% of insert; % of delete; % of find

60;40;0

70

Conclusion Summary

e Concurrent resizing is tricky ¢ We talked about several locking mechanisms
e Lock-based e In particular we have seen
— Fine-grained — TAS & TTAS
— Read/write locks — Alock & backoff lock
— Optimistic — MCS lock & abortable MCS lock
e Lock-free e We also talked about techniques to deal with concurrency in linked lists
— Builds on lock-free list — Hand-over-hand locking

— Optimistic synchronization
— Lazy synchronization
— Lock-free synchronization
¢ Finally, we talked about hashing
— Fine-grained locking
— Recursive split ordering

3/177 3/178

Credits

e The TTAS lock is due to Kruskal, Rudolph, and Snir, 1988.
e Tom Anderson invented the ALock, 1990.

e The MCS lock is due to Mellor-Crummey and Scott, 1991. ;
¢ The first lock-free list algorithms are credited to John Valois, 1995. Questions & Comments?
¢ The lock-free list algorithm discussed in this lecture is a variation of

That’s all, folks!

algorithms proposed by Harris, 2001, and Michael, 2002. —r N
¢ The lock-free hash set based on split-ordering is by Shalev and Shavit, — s S

2006. = e

P LN =

’ -
- - -
- - <
Q @ - -
ETH Q

Zirich

217 & -
SIL79 guss pederai Institute of Technology Zurich 3/180

