1 The Winter Train Problem

We can model each train individually and combine the corresponding sub-states using an AND-super-state, see the figure below. Additionally, in order to “synchronize” the trains, a third sub-state is needed (shown in the middle) which implements a mutual exclusion: For instance, if there is no train between Stans and Engelberg and if train 1 is in state c1, T1 can enter the critical section and train 2 has to wait. (Notice that if both trains are in states c1 and c2 respectively, T1 has priority.)

- The trains start at their states m1 and m2. When m1 (m2) is pressed, then train 1 (2) moves to the right in n1 (n2), until it reaches the switch, where it stops in state o1 (o2).
- Now the "middle"-state can change its state to either y or z, depending on which train got there first. If train 1 (2) arrives first, then the state is changed to y (z) and train 1 (2) can move to state p1 (p2) while moving right.
• After arriving at the station Engelberg, the train waits for 100s, then moves to the left and switches to state q1 (q2) – until it hits the switch at b1 (b0), upon which the "middle"-state can change again – and the train continues to its original station, where it stops.

Positions of the trains (train 1 ; train 2):
• m1: Lucerne ; m2: Sarnen
• n1: Between Lucerne and the switch ; n2: Between Sarnen and the switch
• o1: At the left side of the switch ; o2: At the left side of the switch
• p1: Between the switch and Engelberg ; p2: Between the switch and Engelberg
• q1: Between Engelberg and the switch ; q2: Between Engelberg and the switch
• r1: Between the switch and Lucerne ; Between the switch and Sarnen

2 Structural Properties of Petri Nets and Token Game

a) The pre and post sets of a transition are defined as follows:
• pre set: \(t := \{ p \mid (p,t) \in C \} \)
• post set: \(t* := \{ p \mid (t,p) \in C \} \)
the pre and post sets of a place are defined analogously.

For the petri net \(N_1 \) we obtain the following sets:
• \(t_5 ^* = \{ p_5,p_9 \} \), \(t_5 ^* = \{ p_6 \} \)
• \(t_8 ^* = \{ p_8 \} \), \(t_8 ^* = \{ p_{10},p_5 \} \)
• \(p_3 ^* = \{ t_2 \} \), \(p_3 ^* = \{ t_3 \} \)

b) A transition is enabled if all places in its pre set contain enough tokens. In the case of \(N_1 \), which has only unweighted edges, one token per place suffices. When \(t_2 \) fires, it consumes one token out of each place in the pre set of \(t_2 \) and produces one token on each place in the post set of \(t_2 \). Hence, the firing of \(t_2 \) produces one token on place \(p_3 \) and \(p_9 \) each, the one on \(p_2 \) is consumed. After this, \(t_5 \) is enabled because both \(p_9 \) and \(p_5 \) hold one token. However, \(t_3 \) is not enabled because \(p_3 \) contains a token but \(p_{10} \) does not.

c) Before \(t_2 \) fires there are two tokens in \(N_1 \), one on \(p_2 \) and \(p_5 \) each. Directly afterwards, there are tokens on places \(p_3 \) and \(p_9 \).

d) A token traverses the upper cycle until \(t_2 \) fires. Then one token remains on \(p_3 \) and waits, and another one is produced in \(p_9 \), which enables transition \(t_5 \). When \(t_5 \) consumes the tokens on \(p_9 \) and \(p_5 \) and produces a token on \(p_6 \), this one can traverse the lower cycle until \(t_8 \) is enabled. One token now remains on \(p_5 \) and waits, another one enables \(t_3 \), because there is still one token on \(p_3 \). Now one token traverses the upper cycle again until \(t_2 \) is enabled, and so on.

Hence, this petri net models two processes which always appear alternately.

The reachability graph \(RG(P,\vec{s}_0) \) of a petri net \(P \) is a quadruple \((S,S_0,Act,E) \) such that
• \(S \) is the set of reachable states of \(P \) starting from \(\vec{s}_0 \)
• \(S_0 := \{ \vec{s}_0 \} \) is the start state of \(P \)
• \(Act \) is the set of transition labels
• \(E \subseteq S \times Act \times S \) is the set of edges such that \(E = \{ (\vec{s},t,\delta(\vec{s},t)) \mid \vec{s} \in S \land t \in T \land \vec{s}\triangleright t \} \)

2
Usually the states of the petri net are denoted by vectors such that the \(i \)-th position in the vector indicates the number of tokens on place \(p_i \) of the petri net. So, for example, the starting state \(s_0 \) of \(N_1 \), in which the places \(p_1 \) and \(p_5 \) hold one token each, is denoted by \(s_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) \). Hence, the reachability graph looks as follows:

\[
\mathcal{S} = \{(1, 0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)\}
\]

\[
\mathcal{S}_0 = \{(1, 0, 0, 0, 1, 0, 0, 0, 0, 0)\}
\]

\[
\mathcal{E} = \{(1, 0, 0, 0, 1, 0, 0, 0, 0, 0), t_1, (0, 1, 0, 0, 1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0, 0, 0), t_2, (0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0), t_5, (0, 0, 1, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0), t_6, (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0), t_7, (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0), t_8, (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0), t_3, (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1), t_4, (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)\}
\]

For better legibility we denote the states in such a way that the index contains the places that hold a token in this state, for example \(s_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) = s_{1,5} \).

Then the reachability graph can also be specified as follows:

3 Basic Properties of Petri Nets

A petri net is \(k \)-bounded, if there is no fire sequence that makes the number of tokens in one place grow larger than \(k \). It is obvious that petri net \(N_2 \) is \(1 \)-bounded if \(k \leq 1 \). This holds because in the initial state there is only one token in the net, and in the case \(k \leq 1 \) no transition increases the number of tokens in \(N_2 \). If \(k \geq 2 \), the number of tokens in \(p_1 \) can grow infinitely large by repeatedly firing \(t_1, t_3 \) and \(t_4 \). So, the petri net \(N_2 \) is unbounded for \(k \geq 2 \).

A petri net is deadlock free if no fire sequence leads to a state in which no transition is enabled. If \(k = 0 \), \(N_2 \) is not deadlock-free. The fire sequence \(t_1, t_3, t_4 \) causes the only existing token to be consumed and hence, there is no enabled transition any more. For \(k \geq 1 \), however, no deadlock can occur.

4 Mutual Exclusion

For each process we introduce two places \((p_1, p_2, p_3, p_4) \) representing the process within the normal program execution \((p_1, p_2) \) as well as in the critical section \((p_3, p_4) \). For each process, we have a token indicating which section of the program currently is executed. Additionally, we introduce a place \(p_0 \) representing the mutex variable. If the mutex variable is 0, then we have a
token at p_0. We have to make sure that a process can only enter its critical section if there is a token at the mutex place. The resulting petri net looks as follows.

Assume that initially, both processes are in an uncritical section (in the petri net, this is denoted by a token in place p_1 and p_2 respectively). A process can only enter its critical section (p_3/p_4) if there is a token at p_0. In this case, the token is consumed when entering the critical section. A new mutex token at p_0 is not created until the process leaves its critical section. Hence, both processes exclude each other mutually from the concurrent access to the critical section.