
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Part 2: Fault-Tolerance
Distributed Systems 2013

1/2

Overview Part 2

• Lecture (Monday 9-11 & Friday 9-11, usually)

– It’s all about fault-tolerance

– First theory, in particular consensus, models, algorithms, and lower bounds

– Then large-scale practice, fault-tolerant systems

– Finally small-scale practice, programming, multi-core

• Exercises (Monday 11-12 & Friday 11-12, sometimes)

– There will be paper exercises, without grades

– Exercises don’t have to be handed in…
…but you are strongly encouraged to solve them!

– But: There will be a creative task that gives exam points (10 or 20).

• Personnel

– Roger Wattenhofer, Christian Decker, Michael König, Jara Uitto

– www.disco.ethz.ch

1/3

Why are we studying distributed systems?

• First, and most importantly: The world is distributed!

– Companies with offices around the world

– Computer networks, in particular the Internet

• Performance

– Parallel high performance computing

– Multi-core machines

• Fault-Tolerance

– Availability

– Reliability

1/4

Book for Part 2

• Great book

• Goes beyond class

• Fully covers
Chapter 3

• Does not cover
everything we do
(but also some parts
of Chapters 1 & 2)

• Some pictures on slides
are from Maurice Herlihy

(Thanks, Maurice!)

1/5

Books for Chapters 1 & 2

• Great book

• Goes beyond class

• Does not cover
everything we do
(but also some of
the other parts)

• Some pictures on slides
are from Maurice Herlihy

(Thanks, Maurice!)

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Theory: Consensus
Part 2, Chapter 1

1/7

Overview

• Introduction

• Consensus #1: Shared Memory

• Consensus #2: Wait-free Shared Memory

• Consensus #3: Read-Modify-Write Shared Memory

• Consensus #4: Synchronous Systems

• Consensus #5: Byzantine Failures

• Consensus #6: A Simple Algorithm for Byzantine Agreement

• Consensus #7: The Queen Algorithm

• Consensus #8: The King Algorithm

• Consensus #9: Byzantine Agreement Using Authentication

• Consensus #10: A Randomized Algorithm

• Shared Coin

1/8

Introduction: From Single-Core to Multicore Computers

memory

cpu
cache

Bus Bus

shared memory

cache cache

Server architecture:
The Shared Memory
Multiprocessor (SMP)

Desktop Computer:
Single core

All cores on
the same chip

cache

Bus Bus

shared memory

cache cache

1/9

Sequential Computation

memory

object
object

thread

1/10

Concurrent Computation

shared memory

object
object

multiple
threads
(processes)

1/11

Fault Tolerance & Asynchrony

threads

• Why fault-tolerance?

– Even if processes do not die, there are “near-death experiences”

• Sudden unpredictable delays:

– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)

1/12

Road Map

• In this first part, we are going to focus on principles

– Start with idealized models

– Look at a simplistic problem

– Emphasize correctness over pragmatism

– “Correctness may be theoretical, but incorrectness has practical impact”

• Distributed systems are hard

– Failures

– Concurrency

• Easier to go from theory to practice than vice-versa

I’m no theory weenie! Why all the theorems and proofs?

1/13

The Two Generals

• Red army wins if both sides attack simultaneously

• Red army can communicate by sending messages…

1/14

Problem: Unreliable Communication

• … such as “let’s attack tomorrow at 6am” …

• … but messages do not always make it!

• Task: Design a “red army protocol” that works despite message failures!

1/15

Real World Generals

Date: Wed, 11 Dec 2002 12:33:58 +0100

From: Friedemann Mattern <mattern@inf.ethz.ch>

To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>

Subject: Vorlesung

Sie machen jetzt am Freitag, 08:15 die Vorlesung

Verteilte Systeme, wie vereinbart. OK? (Ich bin

jedenfalls am Freitag auch gar nicht da.) Ich

uebernehme das dann wieder nach den

Weihnachtsferien.

1/16

Real World Generals

Date: Mi 11.12.2002 12:34

From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>

To: Friedemann Mattern <mattern@inf.ethz.ch>

Subject: Re: Vorlesung

OK. Aber ich gehe nur, wenn sie diese Email nochmals

bestaetigen... :-)

1/17

Real World Generals

Date: Wed, 11 Dec 2002 12:53:37 +0100

From: Friedemann Mattern <mattern@inf.ethz.ch>

To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>

Subject: Naechste Runde: Re: Vorlesung

Das dachte ich mir fast. Ich bin Praktiker und mache

es schlauer: Ich gehe nicht, unabhaengig davon, ob

Sie diese email bestaetigen (beziehungsweise

rechtzeitig erhalten). (:-)

1/18

Real World Generals

Date: Mi 11.12.2002 13:01

From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>

To: Friedemann Mattern <mattern@inf.ethz.ch>

Subject: Re: Naechste Runde: Re: Vorlesung ...

Ich glaube, jetzt sind wir so weit, dass ich diese

Emails in der Vorlesung auflegen werde...

1/19

Real World Generals

Date: Wed, 11 Dec 2002 18:55:08 +0100

From: Friedemann Mattern <mattern@inf.ethz.ch>

To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>

Subject: Re: Naechste Runde: Re: Vorlesung ...

Kein Problem. (Hauptsache es kommt raus, dass der

Prakiker am Ende der schlauere ist... Und der

Theoretiker entweder heute noch auf das allerletzte

Ack wartet oder wissend das das ja gar nicht gehen

kann alles gleich von vornherein bleiben laesst...

(:-))

1/20

Theorem

Theorem

Proof:

1. Consider the protocol that sends the fewest messages
2. It still works if the last message is lost
3. So just don’t send it (messengers’ union happy!)
4. But now we have a shorter protocol!
5. Contradicting #1

Fundamental limitation: We need an unbounded number of
messages, otherwise it is possible that no attack takes place!

There is no non-trivial protocol that ensures
that the red armies attack simultaneously

1/21

Consensus Definition: Each Thread has a Private Input

32 19
21

1/22

Consensus Definition: The Threads Communicate

1/23

Consensus Definition: They Agree on Some Thread’s Input

19 19
19

1/24

Consensus is Important

• With consensus, you can implement anything you can imagine…

• Examples:

– With consensus you can decide on a leader,

– implement mutual exclusion,

– or solve the two generals problem

– and much more…

• We will see that in some models, consensus is possible, in some other
models, it is not

• The goal is to learn whether for a given model consensus is possible or not
… and prove it!

1/25

Consensus #1: Shared Memory

• n > 1 processors

• Shared memory is memory that may be accessed simultaneously by
multiple threads/processes.

• Processors can atomically read or write (not both) a shared memory cell

Protocol:

• There is a designated memory cell c.

• Initially c is in a special state “?”

• Processor 1 writes its value v1 into c, then decides on v1.

• A processor j ≠1 reads c until j reads something else than “?”,
and then decides on that.

• Problems with this approach?

1/26

Unexpected Delay

??? ???

1/27

Heterogeneous Architectures

??? ???

i7
i7

Pentium

so much
work!

1/28

Fault-Tolerance

??? ???

1/29

cache

shared memory

cache cache

Computability

• Definition of computability

– Computable usually means Turing-computable,
i.e., the given problem can be solved using a
Turing machine

– Strong mathematical model!

• Shared-memory computability

– Model of asynchronous concurrent computation

– Computable means it is wait-free computable on
a multiprocessor

– Wait-free…?

0 1 1 0 1 0
1

1/30

Consensus #2: Wait-free Shared Memory

• n > 1 processors

• Processors can atomically read or write (not both) a shared memory cell

• Processors might crash (stop… or become very slow…)

Wait-free implementation:

• Every process (method call) completes in a finite number of steps

• Implies that locks cannot be used  The thread holding the lock may
crash and no other thread can make progress

• We assume that we have wait-free atomic registers (that is, reads and
writes to same register do not overlap)

1/31

A Wait-free Algorithm

• There is a cell c, initially c=“?”

• Every processor i does the following:

 r = Read(c);

 if (r == “?”) then

 Write(c, vi); decide vi;

 else

 decide r;

• Is this algorithm correct…?

1/32

An Execution

time

cell c 32 17

?

?

?

32

17 32!
17!

Atomic read/write
register

1/33

Execution Tree

?/? ?/?

32/?

32/?

?/? ?/17 ?/?

?/17 32/? ?/17

Initial state

?/?

32/32

32/17 32/17 32/17 32/17

17/17

read

read

write

write

read

write

read

read

write write

write

write

write read

write write

1/34

Theorem

??? ???

Theorem

There is no wait-free consensus algorithm
using read/write atomic registers

1/35

Proof

• Make it simple

– There are only two threads A and B and the input is binary

• Assume that there is a protocol

• In this protocol, either A or B “moves” in each step

• Moving means

– Register read

– Register write

A moves B moves

1/36

univalent

Execution Tree (of abstract but “correct” algorithm)

Initial state

Final states (decision values)

1 0 0 1 1 0

bivalent

(0-valent) (1-valent)

critical
(univalent with
the next step)

1/37

Bivalent vs. Univalent

• Wait-free computation is a tree

• Bivalent system states

– Outcome is not fixed

• Univalent states

– Outcome is fixed

– Maybe not “known” yet

– 1-valent and 0-valent states

• Claim

– Some initial system state is bivalent

– This means that the outcome is not always fixed from the start

1/38

Proof of Claim: A 0-Valent Initial State

• All executions lead to the decision 0

• Solo executions also lead to the decision 0

0 0

0 0 Similarly, the
decision is always
1 if both threads

start with 1!

1/39

Proof of Claim: Indistinguishable Situations

• These two situations are indistinguishable  The outcome must be the
same

0 0 0 1

The decision is 0! The decision is 0!

Similarly, the decision is 1 if
the red thread crashed!

1/40

Proof of Claim: A Bivalent Initial State

0 0 1 1

0 0

0 1

1 1

This state is
bivalent!

0 1

0 1

Decision: 0

Decision: 0

Decision: 1

Decision: 1

Decision: 1?

Decision: 0?

1/41

Critical States

• Starting from a bivalent initial state

• The protocol must reach a critical state

– Otherwise we could stay bivalent forever

– And the protocol is not wait-free

• The goal is now to show that the system can always remain bivalent

c
0-valent

A state is critical if the
next state is univalent

1-valent

1/42

Reaching a Critical State

• The system can remain bivalent forever if there is always an action that
prevents the system from reaching a critical state:

b

b 1

A moves B moves

b

B moves

b

A moves

B moves

B moves

A moves

1

0
A moves

1-valent

0-valent
1-valent

1/43

Model Dependency

• So far, everything was memory-independent!

• True for

– Registers

– Message-passing

– Carrier pigeons

– Any kind of asynchronous computation

• Threads

– Perform reads and/or writes

– To the same or different registers

– Possible interactions?

1/44

Possible Interactions

x.read() y.read() x.write() y.write()

x.read()

? ? ? ?

y.read()

? ? ? ?

x.write()

? ? ? ?

y.write()

? ? ? ?

A reads x

B writes y

1/45

Reading Registers

B reads x

=

c

States look the same to A

A runs solo, decides

A runs solo, decides

1 0

=

1/46

Possible Interactions

x.read() y.read() x.write() y.write()

x.read()

no no no no

y.read()

no no no no

x.write()

no no ? ?

y.write()

no no ? ?

1/47

Writing Distinct Registers

A writes y

=

c

States look the same to A

A writes y B writes x

B writes x 1 0

=

1/48

Possible Interactions

x.read() y.read() x.write() y.write()

x.read()

no no no no

y.read()

no no no no

x.write()

no no ? no

y.write()

no no no ?

1/49

Writing Same Registers

States look the same to A

A writes x B writes x

A runs solo, decides

c

=

A runs solo, decides
A writes x

1 0

=

1/50

That’s All, Folks!

x.read() y.read() x.write() y.write()

x.read()

no no no no

y.read()

no no no no

x.write()

no no no no

y.write()

no no no no

1/51

What Does Consensus Have to Do With Distributed Systems?

• We want to build a concurrent FIFO Queue with multiple dequeuers

1/52

A Consensus Protocol

2-element array

FIFO Queue with red and
black balls

8

Coveted red ball Dreaded black ball

• Assume we have such a FIFO queue and a 2-element array

1/53

A Consensus Protocol

0 1

0

• Thread i writes its value into the array at position i

1/54

0

A Consensus Protocol

0 1

8

• Then, the thread takes the next element from the queue

1/55

0 1

A Consensus Protocol

I got the coveted red ball,
so I will decide my value

I got the dreaded black ball,
so I will decide the other’s

value from the array

8

1/56

A Consensus Protocol

Why does this work?

• If one thread gets the red ball, then the other gets the black ball

• Winner can take its own value

• Loser can find winner’s value in array

– Because threads write array before dequeuing from queue

Implication

• We can solve 2-thread consensus using only

– A two-dequeuer queue

– Atomic registers

1/57

Implications

• Assume there exists

– A queue implementation from atomic registers

• Given

– A consensus protocol from queue and registers

• Substitution yields

– A wait-free consensus protocol from atomic registers

Corollary

• It is impossible to implement a two-dequeuer wait-free FIFO queue with
read/write shared memory.

• This was a proof by reduction; important beyond NP-completeness…

1/58

Consensus #3: Read-Modify-Write Shared Memory

• n > 1 processors

• Wait-free implementation

• Processors can read and write a shared memory cell in one atomic step:
the value written can depend on the value read

• We call this a read-modify-write (RMW) register

• Can we solve consensus using a RMW register…?

1/59

Consensus Protocol Using a RMW Register

• There is a cell c, initially c=“?”

• Every processor i does the following

if (c == “?”) then
 write(c, vi); decide vi
else
 decide c;

atomic step

RMW(c)

1/60

Discussion

• Protocol works correctly

– One processor accesses c first; this processor will determine decision

• Protocol is wait-free

• RMW is quite a strong primitive

– Can we achieve the same with a weaker primitive?

1/61

Read-Modify-Write More Formally

• Method takes 2 arguments:

– Cell c

– Function f

• Method call:

– Replaces value x of cell c with f(x)

– Returns value x of cell c

1/62

public class RMW {
 private int value;

 public synchronized int rmw(function f) {
 int prior = this.value;
 this.value = f(this.value);
 return prior;
 }

}

Read-Modify-Write

Return prior value

Apply function

1/63

Read-Modify-Write: Read

public class RMW {
 private int value;

 public synchronized int read() {
 int prior = this.value;
 this.value = this.value;
 return prior;
 }

}

Identify function

1/64

Read-Modify-Write: Test&Set

public class RMW {
 private int value;

 public synchronized int TAS() {
 int prior = this.value;
 this.value = 1;
 return prior;
 }

}

Constant function

1/65

Read-Modify-Write: Fetch&Inc

public class RMW {
 private int value;

 public synchronized int FAI() {
 int prior = this.value;
 this.value = this.value+1;
 return prior;
 }

}

Increment function

1/66

Read-Modify-Write: Fetch&Add

public class RMW {
 private int value;

 public synchronized int FAA(int x) {
 int prior = this.value;
 this.value = this.value+x;
 return prior;
 }

}

Addition function

1/67

Read-Modify-Write: Swap

public class RMW {
 private int value;

 public synchronized int swap(int x) {
 int prior = this.value;
 this.value = x;
 return prior;
 }

}

Set to x

1/68

Read-Modify-Write: Compare&Swap

public class RMW {
 private int value;

 public synchronized int CAS(int old, int new) {
 int prior = this.value;
 if(this.value == old)
 this.value = new;
 return prior;
 }

}

“Complex” function

1/69

Definition of Consensus Number

• An object has consensus number n

– If it can be used

– Together with atomic read/write registers

– To implement n-thread consensus, but not (n+1)-thread consensus

• Example: Atomic read/write registers have consensus number 1

– Works with 1 process

– We have shown impossibility with 2

1/70

Consensus Number Theorem

• Consensus numbers are a useful way of measuring synchronization power

• An alternative formulation:

– If X has consensus number c

– And Y has consensus number d < c

– Then there is no way to construct a
wait-free implementation of X by Y

• This theorem will be very useful

– Unforeseen practical implications!

Theorem

If you can implement X from Y
and X has consensus number c,

then Y has consensus number at least c

1/71

Theorem

• A RMW is non-trivial if there exists a value v such that v ≠ f(v)

– Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW…

– But not read

• Implies no wait-free implementation of RMW registers from read/write
registers

• Hardware RMW instructions not just a convenience

Theorem

Any non-trivial RMW object has
consensus number at least 2

1/72

Proof

public class RMWConsensusFor2 implements Consensus{
 private RMW r;

 public Object decide() {
 int i = Thread.myIndex();
 if(r.rmw(f) == v)
 return this.announce[i];
 else
 return this.announce[1-i];
 }

}

• A two-thread consensus protocol using any non-trivial RMW object:

Initialized to v

Am I first?

Yes, return
my input

No, return
other’s input

1/73

Interfering RMW

• Let F be a set of functions such that for all fi and fj, either

– They commute: fi(fj(x))=fj(fi(x))

– They overwrite: fi(fj(x))=fi(x)

• Claim: Any such set of RMW objects has consensus number exactly 2

Examples:

• Overwrite

– Test&Set , Swap

• Commute

– Fetch&Inc, Fetch&Add

fi(x) = new value of cell
(not return value of fi)

1/74

Proof

c A about to apply fA B about to apply fB

• There are three threads, A, B, and C

• Consider a critical state c:

0-valent 1-valent

1/75

Proof: Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fA B applies fB

C runs solo C runs solo

1-valent

1 0

1/76

Proof: Maybe the Functions Commute

c
A applies fA B applies fB

A applies fA B applies fB

C runs solo

These states look the same to C

C runs solo

0-valent 1-valent

1/77

Proof: Maybe the Functions Overwrite

c
A applies fA B applies fB

A applies fA C runs solo

0-valent 1-valent

C runs solo

1 0

1/78

Proof: Maybe the Functions Overwrite

These states look the same to C

c

0-valent 1-valent

C runs solo

C runs solo

A applies fA B applies fB

A applies fA

1/79

Impact

• Many early machines used these “weak” RMW instructions

– Test&Set (IBM 360)

– Fetch&Add (NYU Ultracomputer)

– Swap

• We now understand their limitations

1/80

public class RMWConsensus implements Consensus {
 private RMW r;

 public Object decide() {
 int i = Thread.myIndex();
 int j = r.CAS(-1,i);
 if(j == -1)
 return this.announce[i];
 else
 return this.announce[j];
 }

}

Consensus with Compare & Swap

Initialized to -1

Am I first?

Yes, return
my input

No, return
other’s input

1/81

The Consensus Hierarchy

1

• Read/Write
Registers

2

• Test&Set

• Fetch&Inc

• Fetch&Add

• Swap

… ∞

• CAS

• LL/SC

1/82

Consensus #4: Synchronous Systems

• One can sometimes tell if a processor had crashed

– Timeouts

– Broken TCP connections

• Can one solve consensus at least in synchronous systems?

• Model

– All communication occurs
in synchronous rounds

– Complete communication graph

p1

p2

p3

p4 p5

1/83

Crash Failures

p1

p2

p3

p4 p5

a

a

a a

a

a

a a

• Broadcast: Send a Message to All Processes in One Round

– At the end of the round everybody receives the message a

– Every process can broadcast a value in each round

• Crash Failures: A broadcast can fail if a process crashes

– Some of the messages may be lost, i.e., they are never received

p1

p2

p3

p4 p5

a

a

a

a

Faulty
Processor

1/84

After a Failure, the Process Disappears from the Network

p1

p3

p4

p5

Failure

Round 1 Round 2 Round 3 Round 4 Round 5

p2

p1

p3

p4

p5

p2

p1

p3

p4

p5

p2

p1

p3

p4

p5

p2

p1

p3

p4

p5

p2

1/85

Consensus Repetition

• Everybody has an initial value

• Everybody must decide on the same value

• Validity conditon:
If everybody starts with the same value, they must decide on that value

2

2

2

2 2

Finish

1

0

4

3 2

Start

1/86

Each process:

1. Broadcast own value

2. Decide on the minimum of all received values

A Simple Consensus Algorithm

Including the
own value

Note that only one
round is needed!

1/87

Execution Without Failures

• Broadcast values and decide on minimum  Consensus!

• Validity condition is satisfied: If everybody starts with the same initial
value, everybody sticks to that value (minimum)

1

0

4

3 2

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0

0

0

0 0

1/88

Execution With Failures

• The failed processor doesn’t broadcast its value to all processors

• Decide on minimum  No consensus!

1

0

4

3 2

0,1,2,3,4 1,2,3,4

1,2,3,4 0,1,2,3,4

0

0

1

0 1

fail

1/89

f-resilient Consensus Algorithm

• If an algorithm solves consensus for f failed processes, we say it is an
f-resilient consensus algorithm

• Example: The input and output of a 3-resilient consensus algorithm:

• Refined validity condition:
All processes decide on a value that is available initially

1

1

Finish

1

0

2

3 4

Start

1/90

Each process:

Round 1:
Broadcast own value

Round 2 to round f+1:
Broadcast the minimum of received values unless it has been sent before

End of round f+1:
Decide on the minimum value received

An f-resilient Consensus Algorithm

1/91

An f-resilient Consensus Algorithm

• Example: f=2 failures, f+1 = 3 rounds needed

1

0

4

3 2

1/92

An f-resilient Consensus Algorithm

• Round 1: Broadcast all values to everybody

1

0

4

3 2

1,2,3,4 1,2,3,4

1,2,3,4 0,1,2,3,4

Failure 1

0

1/93

An f-resilient Consensus Algorithm

• Round 2: Broadcast all new values to everybody

1 4

3 2

0,1,2,3,4 1,2,3,4

1,2,3,4 0,1,2,3,4

Failure 1

0

Failure 2

1/94

An f-resilient Consensus Algorithm

• Round 3: Broadcast all new values to everybody

1 4

2

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 1

0

Failure 2

0

1/95

An f-resilient Consensus Algorithm

• Decide on minimum  Consensus!

0 0

0

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 1

0

Failure 2

0

1/96

1 2

No failure

3 4 5 6

Analysis

• If there are f failures and f+1 rounds, then there is a round with no failed
process

• Example: 5 failures, 6 rounds:

1/97

Analysis

• At the end of the round with no failure

– Every (non faulty) process knows about all the values of all the other
participating processes

– This knowledge doesn’t change until the end of the algorithm

• Therefore, everybody will decide on the same value

• However, as we don’t know the exact position of this round, we have to
let the algorithm execute for f+1 rounds

• Validity: When all processes start with the same input value, then
consensus is that value

1/98

Theorem

Proof sketch:

• Assume for contradiction that f or less rounds are enough

• Worst-case scenario: There is a process that fails in each round

Theorem

Any f-resilient consensus algorithm
requires at least f+1 rounds

Note that this is
not a formal proof!

1/99

Round

a

1 2

Worst-case Scenario

pk

pm

• Before process pi fails, it sends its
value a only to one process pk

• Before process pk fails, it sends its
value a to only one process pm

a
pi

1/100

Round 1 2

……

a

f 3

Worst-case Scenario

pf

pn

• At the end of
round f only one
process pn knows
about value a

1/101

Round 1 2

……

a

f 3

Worst-case Scenario

pf

pn

decide

a

b

• Process pn may
decide on a and all
other processes
may decide on
another value b

• Therefore f rounds
are not enough 
At least f+1 rounds
are needed

1/102

Arbitrary Behavior

• The assumption that processes crash and stop forever is sometimes too
optimistic

• Maybe the processes fail
and recover:

• Maybe the processes are
damaged:

Are you there? Probably
not…

??? Are you there?

Time

c

a!

b!

1/103

Consensus #5: Byzantine Failures

p1

p2

p3

p4 p5

a

b

Faulty
processor

• Different processes may receive different values

• A Byzantine process can behave like a crash-failed process

1/104

After a Failure, the Process Remains in the Network

p1

p3

p4

p5

Failure

p2

p1

p3

p4

p5

p2

p1

p3

p4

p5

p2

p1

p3

p4

p5

p2

p1

p3

p4

p5

p2

Round 1 Round 2 Round 3 Round 4 Round 5

1/105

Consensus with Byzantine Failures

• Again: If an algorithm solves consensus for f failed processes, we say it is an
f-resilient consensus algorithm

• Validity condition: If all non-faulty processes start with the same value,
then all non-faulty processes decide on that value

– Note that in general this validity condition does not guarantee that the final
value is an input value of a non-Byzantine process

– However, if the input is binary, then the validity condition ensures that
processes decide on a value that at least one non-Byzantine process had
initially

• Obviously, any f-resilient consensus algorithm requires at least f+1 rounds
(follows from the crash failure lower bound)

• How large can f be…? Can we reach consensus as long as
the majority of processes is correct (non-Byzantine)?

1/106

Theorem

Theorem

Proof outline:

• First, we prove the 3 processes case

• The general case can be proved by reducing it to the 3 processes case

There is no f-resilient algorithm for n processes,
where f ≥ n/3

1/107

The 3 Processes Case

Proof:

Lemma

There is no 1-resilient algorithm for 3 processes

C A

B

• Intuition:

• Process A may also receive information
from C about B’s messages to C

• Process A may receive conflicting
information about B from C and about
C from B (the same for C!)

• It is impossible for A and C to decide
which information to base their
decision on!

Byzantine

? ?

1/108

Proof

• Assume that both A and C have input
0. If they decided 1, they could violate
the validity condition  A and C must
decide 0 independent of what B says

• Similary, A and C must decide 1 if
their inputs are 1

• We see that the processes must base
their decision on the majority vote

• If A’s input is 0 and B tells A
that its input is 0  A decides 0

• If C’s input is 1 and B tells C
that its input is 1  C decides 1 C:1 A:0

B

0
0 1

1

0! 1!

C:0 A:0

B

0
0

1 1

1/109

The General Case

• Assume for contradiction that there is an f-resilient algorithm A for n
processes, where f ≥ n/3

• We use this algorithm to solve the consensus algorithm for 3 processes
where one process is Byzantine!

• If n is not evenly divisible by 3, we increase it by 1 or 2 to ensure that n is a
multiple of 3

• We let each of the three processes simulate n/3 processes

1/110

The General Case

• One of the 3 processes is Byzantine  Its n/3 simulated processes may all
behave like Byzantine processes

• Since algorithm A tolerates n/3 Byzantine failures, it can still reach
consensus  We solved the consensus problem for three processes!

Consensus! Consensus!

1/111

Consensus #6: A Simple Algorithm for Byzantine Agreement

• Can the processes reach consensus if n > 3f?

• A simpler question: Can the processes reach consensus if n=4 and f=1?

• The answer is yes. It takes two rounds:

 [matrix: one column for each original value, one row for each neighbor]

1

2 3

Round 1: Exchange all values

1,.,2,3

0,1,2,. 2,1,.,3

Round 2: Exchange the received info

1

2 3

1,1,3,0
2,1,2,3
0,1,2,3

0,3,1,3
1,1,2,3
2,1,2,3

2,0,2,1
1,1,2,3
0,1,2,3

1/112

A Simple Algorithm for Byzantine Agreement

• After the second round each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of 3 values of a column are equal, this
value is accepted. If all 3 values are different, the value is discarded

• The node then decides on the minimum accepted value

1

1 1

1,1,3,0
2,1,2,3 x,1,2,3
0,1,2,3

0,3,1,3
1,1,2,3 x,1,2,3
2,1,2,3

2,0,2,1
x,1,2,3 1,1,2,3

0,1,2,3

Consensus!

1/113

A Simple Algorithm for Byzantine Agreement

• Does this algorithm still work in general for any f and n > 3f ?

• The answer is no. Try f=2 and n=7:

• The problem is that q can say different things about what p sent to q!

• What is the solution to this problem?

p 1 0

0 q 1 1

1 0

0
1

1

Round 1: Exchange all values Round 2: Exchange the received info

p 1 0

0 q 1 1

p said 0

p said 0

p said 1

p said 1

p said 1

Majority
says 0!

Majority
says 1!

1/114

A Simple Algorithm for Byzantine Agreement

• The solution is simple: Again exchange all information!

• This way, the processes can learn that q gave inconsistent information
about p  q can be excluded, and also p if it also gave inconsistent
information (about q).

• If f=2 and n > 6, consensus can be reached in 3 rounds!

• In fact, the algorithm

 solves the problem for any f and any n > 3f

Exchange all information for f+1 rounds
Ignore all processes that provided inconsistent information
Let all processes decide based on the same input

1/115

A Simple Algorithm for Byzantine Agreement: Summary

• The proposed algorithm has several advantages:

+ It works for any f and n > 3f, which is optimal

+ It only takes f+1 rounds. This is even optimal for crash failures!

+ It works for any input and not just binary input

• However, it has some considerable disadvantages:

- ‘‘Ignoring all processes that provided inconsistent information’’ is not easy
to formalize

- The size of the messages increases exponentially! This is a severe problem
It is worth studying whether it is possible to solve the problem with
small(er) messages

1/116

Consensus #7: The Queen Algorithm

• The Queen algorithm is a simple Byzantine agreement algorithm that uses
small messages

• The Queen algorithm solves consensus with n processes and f failures
where f < n/4 in f+1 phases

Idea:

• There is a different (a priori known) queen in each phase

• Since there are f+1 phases, in one phase the queen is not Byzantine

• Make sure that in this round all processes choose the same value and that
in future rounds the processes do not change their values anymore

A phase consists
of 2 rounds

1/117

In each phase i ϵ 1...f+1:

Round 1:
Broadcast own value
Set own value to the value that was received most often
If own value appears > n/2+f times
 support this value
else
 do not support any value

Round 2:
The queen broadcasts its value
If not supporting any value
 set own value to the queen’s value

The Queen Algorithm

At the end of phase f+1,
decide on own value

Also send own
value to oneself

If several values have
the same (highest)

frequency, choose any
value, e.g., the smallest

1/118

2

1

0

0

1

• Example: n = 6, f=1

• Phase 1, round 1 (All broadcast):

0,0,0,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0
0

1

1

0

The Queen Algorithm: Example

No process
supports a value

Majority value

All received values

1/119

• Phase 1, round 2 (Queen broadcasts):

The Queen Algorithm: Example

2

1

0

0

1

2
1

0

1

0

All processes choose
the queen’s value

1/120

• Phase 2, round 1 (All broadcast)

The Queen Algorithm: Example

2

1

0

0

1
0,0,0,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0
0

1

1

0

No process
supports a value

1/121

• Phase 2, round 2 (Queen broadcasts):

The Queen Algorithm: Example

0

0

0

0

0

0

0

0

0

All processes choose
the queen’s value

0

Consensus!

1/122

• After the phase where the queen is correct, all correct processes have the
same value

– If all processes change their values to the queen’s value, obviously all values
are the same

– If some process does not change its value to the queen’s value, it received a
value > n/2+f times  All other correct processes (including the queen)
received this value > n/2 times and thus all correct processes share this value

• In all future phases, no process changes its value

– In the first round of such a phase, processes receive their own value from at
least n-f > n/2 processes and thus do not change it

– The processes do not accept the queen’s proposal if it differs from their own
value in the second round because the processes received their own value at
least n-f > n/2+f times. Thus, all correct processes support the same value

That’s why we
need f < n/4!

The Queen Algorithm: Analysis

1/123

The Queen Algorithm: Summary

• The Queen algorithm has several advantages:

+ The messages are small: processes only exchange their current values

+ It works for any input and not just binary input

• However, it also has some disadvantages:

- The algorithm requires f+1 phases consisting of 2 rounds each
This is twice as much as an optimal algorithm

- It only works with f < n/4 Byzantine processes!

• Is it possible to get an algorithm that works with f < n/3 Byzantine
processes and uses small messages?

1/124

Consensus #8: The King Algorithm

• The King algorithm is an algorithm that tolerates f < n/3 Byzantine failures
and uses small messages

• The King algorithm also takes f+1 phases

Idea:

• The basic idea is the same as in the Queen algorithm

• There is a different (a priori known) king in each phase

• Since there are f+1 phases, in one phase the king is not Byzantine

• The difference to the Queen algorithm is that the correct processes only
propose a value if many processes have this value, and a value is only
accepted if many processes propose this value

A phase now
consists of 3 rounds

1/125

In each phase i ϵ 1...f+1:

Round 1:
Broadcast own value

Round 2:
If some value x appears ≥ n-f times
 Broadcast “Propose x”
If some proposal received > f times
 Set own value to this proposal

Round 3:
The king broadcasts its value
If own value received < n-f proposals
 Set own value to the king’s value

The King Algorithm

At the end of phase f+1,
decide on own value

Also send own
value to oneself

1/126

• Example: n = 4, f=1

• Phase 1:

The King Algorithm: Example

All processes choose
the king’ value

0

1 1

0,0,1,1

1
0

0

0,0,1,1 0,1,1,1

0

1 1 1*

0* 1

0 1

1
0

1

0* = “Propose 0”
1* = “Propose 1”

Round 1 Round 2 Round 3

1*

1*
1*

1*

2 propose 1

2 propose 1

1 proposal each

“Propose 1”

1/127

• Example: n = 4, f=1

• Phase 2:

The King Algorithm: Example

1

0 1

0,1,1,1

1
0

1

0,0,1,1 0,1,1,1

1

1 1 1*

1

1 1

1
1

1

0* = “Propose 0”
1* = “Propose 1”

Round 1 Round 2 Round 3

1*

1*

1*

2 propose 1

2 propose 1

3 propose 1

1*

“Propose 1”

“Propose 1”

1*

I take the
king’s value!

I keep my
own value!

Consensus!

Set to 1!

1/128

• Observation: If some correct process proposes x, then no other correct
process proposes y ≠ x

– Both processes would have to receive ≥ n-f times the same value, i.e., both
processes received their value from ≥ n-2f distinct correct processes

– In total, there must be ≥ 2(n-2f) + f > n processes, a contradiction!

• The validity condition is satisfied

– If all correct processes start with the same value, all correct processes receive
this value ≥ n-f times and propose it

– All correct processes receive ≥ n-f times proposals, i.e., no correct process will
ever change its value to the king’s value

We used
that f < n/3!

The King Algorithm: Analysis

1/129

• After the phase where the king is correct, all correct processes have the
same value

– If all processes change their values to the king’s value, obviously all values are
the same

– If some process does not change its value to the king’s value, it received a
proposal ≥ n-f times  ≥ n-2f correct processes broadcast this proposal and
all correct processes receive it ≥ n-2f > f times  All correct processes set
their value to the proposed value. Note that only one value can be proposed
> f times, which follows from the observation on the previous slide

• In all future phases, no process changes its value

– This follows immediately from the fact that all correct processes have the
same value after the phase where the king is correct and the validity
condition

The King Algorithm: Analysis

1/130

The King Algorithm: Summary

• The King algorithm has several advantages:

+ It works for any f and n > 3f, which is optimal

+ The messages are small: processes only exchange their current values

+ It works for any input and not just binary input

• However, it also has a disadvantage:

- The algorithm requires f+1 phases consisting of 3 rounds each
This is three times as much as an optimal algorithm

• Is it possible to get an algorithm that uses small messages and requires
fewer rounds of communication?

1/131

Consensus #9: Byzantine Agreement Using Authentication

• A simple way to reach consensus is to use authenticated messages

• Unforgeability condition: If a process never sends
a message m, then no correct process ever accepts m

• Why is this condition helpful?

– A Byzantine process cannot convince a correct process that some other
correct processes voted for a certain value if they did not!

• Idea:

• There is a designated process P. The goal is to decide on P’s value

• For the sake of simplicity, we assume a binary input. The default value is
0, i.e., if P cannot convince the processes that P’s input is 1, everybody
chooses 0

w

v

0

0 0

v said 1

w must
be lying!

1/132

Byzantine Agreement Using Authentication

If I am P and own input is 1
 value :=1
 broadcast “P has 1”
else
 value := 0

In each round r ϵ 1...f+1:

If value = 0 and accepted r messages “P has 1” in total including a message
from P itself
 value := 1
 broadcast “P has 1” plus the r accepted messages that caused the
 local value to be set to 1

After f+1 rounds:

Decide value

In total r+1 authenticated
“P has 1” messages

1/133

• Assume that P is correct

– P’s input is 1: All correct processes accept P’s message in round 1 and set
value to 1. No process ever changes its value back to 0

– P’s input is 0: P never sends a message “P has 1”, thus no correct process ever
sets its value to 1

• Assume that P is Byzantine

– P tries to convince some correct processes that its input is 1

– Assume that a correct process p sets its value to 1 in a round r < f+1:
Process p has accepted r messages including the message from P. Therefore,
all other correct processes accept the same r messages plus p’s message and
set their values to 1 as well in round r+1

– Assume that a correct process p sets its value to 1 in round f+1:
In this case, p accepted f+1 messages. At least one of those is sent by a
correct process, which must have set its value to 1 in an earlier round. We are
again in the previous case, i.e., all correct processes decide 1!

Byzantine Agreement Using Authentication: Analysis

1/134

Byzantine Agreement Using Authentication: Summary

• Using authenticated messages has several advantages:

+ It works for any number of Byzantine processes!

+ It only takes f+1 rounds, which is optimal

+ Small messages: processes send at most f+1 “short” messages to all other
processes in a single round

• However, it also has some disadvantages:

- If P is Byzantine, the processes may agree on a value that is not in the
original input

- It only works for binary input

- The algorithm requires authenticated messages…

sub-exponential length

1/135

Byzantine Agreement Using Authentication: Improvements

• Can we modify the algorithm so that it satisfies the validity condition?

– Yes! Run the algorithm in parallel for 2f+1 “masters” P. Either 0 or 1 occurs at
least f+1 times, i.e., at least one correct process had this value. Decide on this
value!

– Alas, this modified protocol only works if f < n/2

• Can we modify the algorithm so that it also works with an arbitrary input?

– Yes! In fact, the algorithm does not have to be changed much

– We won’t discuss this modification in class

• Can we get rid of the authentication?

– Yes! Use consistent-broadcast. This technique is not discussed either

– This modified protocol works if f < n/3, which is optimal

– However, each round is split into two
 The total number of rounds is 2f+2

1/136

Consensus #10: A Randomized Algorithm

• So far we mainly tried to reach consensus in synchronous systems. The
reason is that no deterministic algorithm can guarantee consensus in
asynchronous systems even if
only one process may crash

• Can one solve consensus in asynchronous systems if we allow our
algorithms to use randomization?

• The answer is yes!

• The basic idea of the algorithm is to push the initial value. If other
processes do not follow, try to push one of the suggested values randomly

• For the sake of simplicity, we assume that the input is binary and at most
f<n/9 processes are Byzantine

Asynchronous system:
Messages are delayed

indefinitely

Synchronous system:
Communication proceeds

in synchronous rounds

1/137

Randomized Algorithm

x := own input; r := 0
Broadcast proposal(x, r)

In each round r = 1,2,…:

Wait for n-f proposals
If at least n-2f proposals have some value y
 x := y; decide on y
else if at least n-4f proposals have some value y
 x := y;
else
 choose x randomly with P[x=0] = P[x=1] = ½
Broadcast proposal(x, r)
If decided on a value  stop

1/138

Randomized Algorithm: Analysis

• Validity condition (If all have the same input, all choose this value)

– If all correct processes have the same initial value x, they will receive n-2f
proposals containing x in the first round and they will decide on x

• Agreement (if the processes decide, they agree on the same value)

– Assume that some correct process decides on x. This process must have
received x from n-3f correct processes. Every other correct process must have
received x at least n-4f times, i.e., all correct processes set their local value to
x, and propose and decide on x in the next round

The processes broadcast at the end
of a phase to ensure that the

processes that have already decided
broadcast their value again!

1/139

Randomized Algorithm: Analysis

• Termination (all correct processes eventually decide)

– If some processes do not set their local value randomly, they set their local
value to the same value. Proof: Assume that some processes set their value to
0 and some others to 1, i.e., there are ≥ n-5f correct processes proposing 0
and ≥ n-5f correct processes proposing 1.
In total there are ≥ 2(n-5f) + f > n processes. Contradiction!

– Thus, in the worst case all n-f correct processes need to choose the same bit
randomly, which happens with probability (½)(n-f)

– Hence, all correct processes eventually decide. The expected running time is
smaller than 2n

• The running time is awfully slow. Is there a clever way to speed up the
algorithm?

• What about simply setting x:=1?! (Why doesn’t it work?)

That’s why we need f < n/9!

1/140

Can we do this faster?! Yes, with a Shared Coin

• A better idea is to replace

with a subroutine in which all the processes compute
a so-called shared (a.k.a. common, “global”) coin

• A shared coin is a random binary variable that is 0
with constant probability, and 1 with constant probability

• For the sake of simplicity, we assume that
there are at most f < n/3 crash failures
(no Byzantine failures!!!)

choose x randomly with P[x=0] = P[x=1] = ½

All correct processes
know the outcome of
the shared coin toss
after each execution

of the subroutine

1/141

Shared Coin Algorithm

Code for process i:

Set local coin ci := 0 with probability 1/n, else ci :=1
Broadcast ci

Wait for exactly n-f coins and collect all coins in the local coin set si

Broadcast si
Wait for exactly n-f coin sets
If at least one coin is 0 among all coins in the coin sets
 return 0
else
 return 1

Assume the worst case:
Choose f so that 3f+1 = n!

1/142

• Termination (of the subroutine)

– All correct processes broadcast their coins. It follows that all correct processes
receive at least n-f coins

– All correct processes broadcast their coin sets. It follows that all correct
processes receive at least n-f coin sets and the subroutine terminates

• We will now show that at least 1/3 of all coins are seen by everybody

• More precisely: We will show that at least f+1 coins are in at least f+1 coin
sets

– Recall that 3f+1 = n, therefore f+1 > n/3

– Since these coins are in at least f+1 coin sets and all processes
receive n-f coin sets, all correct processes see these coins!

Shared Coin: Analysis

A coin is seen if it is in at
least one received coin set

1/143

Shared Coin: Analysis

• Proof that at least f+1 coins are in at least f+1 coin sets

– Draw the coin sets and the contained coins as a matrix

– Example: n=7, f=2

s1 s3 s5 s6 s7

c1 x x x x x

c2 x x

c3 x x x x x

c4 x x x

c5 x x

c6 x x x x

c7 x x x x

x means coin ci is in set sj

1/144

Shared Coin: Analysis

• At least f+1 rows (coins) have at least f+1 x’s (are in at least f+1 coin sets)

– First, there are exactly (n-f)2 x’s in this matrix

– Assume that the statement is wrong: Then at most f rows may be full and
contain n-f x’s. And all other rows (at most n−f) have at most f x’s

– Thus, in total we have at most f(n-f)+ (n-f)f = 2f(n-f) x’s

– But 2f(n-f) < (n-f)2 because 2f < n-f

s1 s3 s5 s6 s7

c1 x x x x x

c2 x x

c3 x x x x x

c4 x x x

c5 x x

c6 x x x x

c7 x x x x

Here we use 3f < n

1/145

Shared Coin: Theorem

Proof:

• With probability (1-1/n)n ≈ 1/e ≈ 0.37 all processes choose 1. Thus, all
correct processes return 1

• There are at least f+1 ≈ n/3 coins seen by all correct processes.
The probability that at least one of these coins is set to 0 is at least
1-(1-1/n)n/3 ≈ 1-(1/e)1/3 ≈ 0.28

Theorem

All processes decide 0 with constant probability, and
all processes decide 1 with constant probability

1/146

Back to Randomized Consensus

• If this shared coin subroutine is used, there is a constant probability that
the processes agree on a value

• Some nodes may not want to perform the subroutine because they
received the same value x at least n-4f times. However, there is also a
constant probability that the result of the shared coin toss is x!

• Of course, all nodes must take part in the execution of the subroutine

• This randomized algorithm terminates in a constant number of rounds
(in expectation)!

1/147

Randomized Algorithm: Summary

• The randomized algorithm has several advantages:

+ It only takes a constant number of rounds in expectation

+ It can handle crash failures even if communication is asynchronous

• However, it also has some disadvantages:

- It works only if there are f < n/9 crash failures. It doesn’t work if there are
Byzantine processes

- It only works for binary input

• Can it be improved?

- There is a constant expected time algorithm that tolerates
f < n/2 crash failures

- There is a constant expected time algorithm that tolerates
f < n/3 Byzantine failures

There are similar
algorithms for the

shared memory model

1/148

Message Complexity

• In all of the previously discussed message passing algorithms, each (good)
node broadcasts. Message complexity is Ω 𝑛2 .

• “The communication overhead of Byzantine Agreement is inherently
large” (Cheng et al. 2009)

• Can the message complexity be improved?

+ Yes!

+ Byzantine Agreement can be solved in a synchronous environment with
Õ 𝑛 𝑛 messages.

 Requires polylogarithmic time.

1/149

Byzantine AND Asynchronous?

• Are there algorithms that can solve Byzantine agreement in an
asynchronous environment?

+ Yes, there are.

 However, the solution comes with a cost. The fraction of nodes that can
be Byzantine decreases to 1/35715. Also, the expected message
complexity of the state of the art algorithm is 𝑂 𝑛3 .

+ Message sizes remain polynomial.

+ The algorithm does not use a global coin, but tries to detect (biased)
local coinflips from Byzantine processes.

1/150

Summary

• We have solved consensus in a variety of models

• In particular we have seen

– algorithms

– wrong algorithms

– lower bounds

– impossibility results

– reductions

– etc.

• In the next part, we will discuss fault-tolerance in practice

1/151

Consensus: Decision Tree

Shared memory?

Wait-free? Synchronous?

RMW? Authenticated? #1 Randomized?

#2

f < n/3?

#3 Byzantine? #2 #10 #9

#4

#5 #6,8

Y N

Y N Y N

Y N Y N Y N

Y N

Y N

Message passing

Also #7 if f < n/4

1/152

Credits

• The impossibility result (#2) is from Fischer, Lynch, Patterson, 1985

• The hierarchy (#3) is from Herlihy, 1991.

• The synchronous studies (#4) are from Dolev and Strong, 1983, and others.

• The Byzantine agreement problem (#5) and the simple algorithm (#6) are
from Lamport, Shostak, Pease, 1980ff., and others

• The Queen algorithm (#7) and the King algorithm (#8) are from Berman,
Garay, and Perry, 1989.

• The algorithm using authentication (#9) is due to Dolev and Strong, 1982.

• The first randomized algorithm (#10) is from Ben-Or, 1983.

• The concept of a shared coin was introduced by Bracha, 1984.

• Byzantine Agreement with less than 𝑛2 messages is from King and Saia
2011.

• Byzantine Agreement in an asynchronous setting is from King and Saia
2013.

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

That’s all, folks!
Questions & Comments?

