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Overview Part 2 

 

• Lecture (Monday 9-11 & Friday 9-11, usually) 

– It’s all about fault-tolerance 

– First theory, in particular consensus, models, algorithms, and lower bounds 

– Then large-scale practice, fault-tolerant systems 

– Finally small-scale practice, programming, multi-core 

 

• Exercises (Monday 11-12 & Friday 11-12, sometimes) 

– There will be paper exercises, without grades 

– Exercises don’t have to be handed in… 
…but you are strongly encouraged to solve them! 

– But: There will be a creative task that gives exam points (10 or 20). 

 

• Personnel 

– Roger Wattenhofer, Christian Decker, Michael König, Jara Uitto 

– www.disco.ethz.ch 
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Why are we studying distributed systems? 

 

• First, and most importantly: The world is distributed! 

– Companies with offices around the world 

– Computer networks, in particular the Internet 

 

• Performance 

– Parallel high performance computing 

– Multi-core machines 

 

• Fault-Tolerance 

– Availability 

– Reliability 
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Book for Part 2 

 

• Great book 

• Goes beyond class 

• Fully covers 
Chapter 3 

• Does not cover  
everything we do 
(but also some parts 
of Chapters 1 & 2) 

 

 

• Some pictures on slides 
are from Maurice Herlihy 
 
(Thanks, Maurice!) 
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Books for Chapters 1 & 2 

 

• Great book 

• Goes beyond class 

• Does not cover  
everything we do 
(but also some of 
the other parts) 

 

 

 

• Some pictures on slides 
are from Maurice Herlihy 
 
(Thanks, Maurice!) 
 

ETH Zurich – Distributed Computing – www.disco.ethz.ch 

Roger Wattenhofer 

Theory: Consensus 
Part 2, Chapter 1 
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Overview 

 

• Introduction 

• Consensus #1: Shared Memory 

• Consensus #2: Wait-free Shared Memory 

• Consensus #3: Read-Modify-Write Shared Memory 

• Consensus #4: Synchronous Systems 

• Consensus #5: Byzantine Failures 

• Consensus #6: A Simple Algorithm for Byzantine Agreement 

• Consensus #7: The Queen Algorithm 

• Consensus #8: The King Algorithm 

• Consensus #9: Byzantine Agreement Using Authentication 

• Consensus #10: A Randomized Algorithm 

• Shared Coin 

 

1/8 

Introduction: From Single-Core to Multicore Computers 

memory 

cpu 
cache 

Bus Bus 

shared memory 

cache cache 

Server architecture: 
The Shared Memory 
Multiprocessor (SMP) 

Desktop Computer: 
Single core 

All cores on 
the same chip 

cache 

Bus Bus 

shared memory 

cache cache 
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Sequential Computation 

memory 

object 
object 

thread 
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Concurrent Computation 

shared memory 

object 
object 

multiple 
threads 
(processes) 
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Fault Tolerance & Asynchrony 

threads 

 

 

 

 

 

 

 

 

• Why fault-tolerance? 

– Even if processes do not die, there are “near-death experiences” 

• Sudden unpredictable delays: 

– Cache misses (short) 

– Page faults (long) 

– Scheduling quantum used up (really long) 
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Road Map 

 

• In this first part, we are going to focus on principles 

– Start with idealized models 

– Look at a simplistic problem 

– Emphasize correctness over pragmatism 

– “Correctness may be theoretical, but incorrectness has practical impact” 

 

 

 

 

• Distributed systems are hard 

– Failures 

– Concurrency 

 

• Easier to go from theory to practice than vice-versa 

 

I’m no theory weenie! Why all the theorems and proofs? 
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The Two Generals 

 

• Red army wins if both sides attack simultaneously 

• Red army can communicate by sending messages… 
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Problem: Unreliable Communication 

 

• … such as “let’s attack tomorrow at 6am” … 

• … but messages do not always make it! 

• Task: Design a “red army protocol” that works despite message failures! 
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Real World Generals 

 

Date: Wed, 11 Dec 2002 12:33:58 +0100 

From: Friedemann Mattern <mattern@inf.ethz.ch> 

To: Roger Wattenhofer <wattenhofer@inf.ethz.ch> 

Subject: Vorlesung 

 

Sie machen jetzt am Freitag, 08:15 die Vorlesung 

Verteilte Systeme, wie vereinbart. OK? (Ich bin 

jedenfalls am Freitag auch gar nicht da.) Ich 

uebernehme das dann wieder nach den 

Weihnachtsferien.  
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Real World Generals 

 

Date: Mi 11.12.2002 12:34 

From: Roger Wattenhofer <wattenhofer@inf.ethz.ch> 

To: Friedemann Mattern <mattern@inf.ethz.ch> 

Subject: Re: Vorlesung 

 

OK. Aber ich gehe nur, wenn sie diese Email nochmals 

bestaetigen... :-) 
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Real World Generals 

 

Date: Wed, 11 Dec 2002 12:53:37 +0100 

From: Friedemann Mattern <mattern@inf.ethz.ch> 

To: Roger Wattenhofer <wattenhofer@inf.ethz.ch> 

Subject: Naechste Runde: Re: Vorlesung 

 

Das dachte ich mir fast. Ich bin Praktiker und mache 

es schlauer: Ich gehe nicht, unabhaengig davon, ob 

Sie diese email bestaetigen (beziehungsweise 

rechtzeitig erhalten). (:-) 
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Real World Generals 

 

Date: Mi 11.12.2002 13:01 

From: Roger Wattenhofer <wattenhofer@inf.ethz.ch> 

To: Friedemann Mattern <mattern@inf.ethz.ch> 

Subject: Re: Naechste Runde: Re: Vorlesung ... 

 

Ich glaube, jetzt sind wir so weit, dass ich diese 

Emails in der Vorlesung auflegen werde... 
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Real World Generals 

 

Date: Wed, 11 Dec 2002 18:55:08 +0100 

From: Friedemann Mattern <mattern@inf.ethz.ch> 

To: Roger Wattenhofer <wattenhofer@inf.ethz.ch> 

Subject: Re: Naechste Runde: Re: Vorlesung ... 

 

Kein Problem. (Hauptsache es kommt raus, dass der 

Prakiker am Ende der schlauere ist... Und der 

Theoretiker entweder heute noch auf das allerletzte 

Ack wartet oder wissend das das ja gar nicht gehen 

kann alles gleich von vornherein bleiben laesst... 

(:-)) 
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Theorem 

Theorem 

Proof: 
 
1. Consider the protocol that sends the fewest messages 
2. It still works if the last message is lost 
3. So just don’t send it (messengers’ union happy!) 
4. But now we have a shorter protocol! 
5. Contradicting #1 

 
 

Fundamental limitation: We need an unbounded number of 
messages, otherwise it is possible that no attack takes place! 

There is no non-trivial protocol that ensures 
that the red armies attack simultaneously 
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Consensus Definition: Each Thread has a Private Input 

32 19 
21 
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Consensus Definition: The Threads Communicate 
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Consensus Definition: They Agree on Some Thread’s Input 

19 19 
19 
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Consensus is Important 

 

• With consensus, you can implement anything you can imagine… 

 

• Examples: 

– With consensus you can decide on a leader, 

– implement mutual exclusion, 

– or solve the two generals problem 

– and much more… 

 

• We will see that in some models, consensus is possible, in some other 
models, it is not 

 

• The goal is to learn whether for a given model consensus is possible or not 
… and prove it! 
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Consensus #1: Shared Memory 

 

• n > 1 processors 

• Shared memory is memory that may be accessed simultaneously by 
multiple threads/processes. 

• Processors can atomically read or write (not both) a shared memory cell 

 

Protocol: 

 

• There is a designated memory cell c. 

• Initially c is in a special state “?” 

• Processor 1 writes its value v1 into c, then decides on v1. 

• A processor j ≠1 reads c until j reads something else than “?”,  
and then decides on that. 

 

• Problems with this approach? 
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Unexpected Delay 

??? ??? 
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Heterogeneous Architectures  

??? ??? 

i7 
i7 

Pentium 

so much 
work! 

1/28 

Fault-Tolerance  

??? ??? 
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cache 

shared memory 

cache cache 

Computability 

 

• Definition of computability 

– Computable usually means Turing-computable, 
i.e., the given problem can be solved using a 
Turing machine 

– Strong mathematical model! 

 

 

 

 

• Shared-memory computability 

– Model of asynchronous concurrent computation 

– Computable means it is wait-free computable on 
a multiprocessor 

– Wait-free…? 

 

0 1 1 0 1 0 
1 
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Consensus #2: Wait-free Shared Memory 

 

• n > 1 processors 

• Processors can atomically read or write (not both) a shared memory cell 

• Processors might crash (stop… or become very slow…) 

 

 

Wait-free implementation: 

 

• Every process (method call) completes in a finite number of steps 

• Implies that locks cannot be used  The thread holding the lock may 
crash and no other thread can make progress 

• We assume that we have wait-free atomic registers (that is, reads and 
writes to same register do not overlap) 
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A Wait-free Algorithm 

 

• There is a cell c, initially c=“?” 

• Every processor i does the following: 

 

  r = Read(c); 

 if (r == “?”) then  

   Write(c, vi); decide vi; 

 else 

   decide r; 

 

 

• Is this algorithm correct…? 
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An Execution 

time 

cell c 32 17 

? 

? 

? 

32 

17 32! 
17! 

Atomic read/write 
register 
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Execution Tree 

?/? ?/? 

32/? 

32/? 

?/? ?/17 ?/? 

?/17 32/? ?/17 

Initial state 

?/? 

32/32 

32/17 32/17 32/17 32/17 

17/17 

read 

read 

write 

write 

read 

write 

read 

read 

write write 

write 

write 

write read 

write write 
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Theorem 

??? ??? 

Theorem 

There is no wait-free consensus algorithm 
using read/write atomic registers 
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Proof  

 

• Make it simple 

– There are only two threads A and B and the input is binary 

• Assume that there is a protocol 

• In this protocol, either A or B “moves” in each step 

• Moving means 

– Register read 

– Register write 

 

A moves B moves 
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univalent 

Execution Tree (of abstract but “correct” algorithm) 

Initial state 

Final states (decision values) 

1 0 0 1 1 0 

bivalent 

(0-valent) (1-valent) 

critical 
(univalent with 
the next step) 
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Bivalent vs. Univalent 

 

• Wait-free computation is a tree 

• Bivalent system states 

– Outcome is not fixed 

• Univalent states 

– Outcome is fixed 

– Maybe not “known” yet 

– 1-valent and 0-valent states 

 

 

• Claim 

– Some initial system state is bivalent 

– This means that the outcome is not always fixed from the start 
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Proof of Claim: A 0-Valent Initial State 

 

• All executions lead to the decision 0 

 

 

 

 

 

 

 

• Solo executions also lead to the decision 0 

0 0 

0 0 Similarly, the 
decision is always 
1 if both threads 

start with 1! 
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Proof of Claim: Indistinguishable Situations 

 

• These two situations are indistinguishable  The outcome must be the 
same 

0 0 0 1 

The decision is 0! The decision is 0! 

Similarly, the decision is 1 if 
the red thread crashed! 
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Proof of Claim: A Bivalent Initial State 

0 0 1 1 

0 0 

0 1 

1 1 

This state is 
bivalent! 

0 1 

0 1 

Decision: 0 

Decision: 0 

Decision: 1 

Decision: 1 

Decision: 1? 

Decision: 0? 
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Critical States 

 

• Starting from a bivalent initial state 

• The protocol must reach a critical state 

– Otherwise we could stay bivalent forever 

– And the protocol is not wait-free 

• The goal is now to show that the system can always remain bivalent 

c 
0-valent 

A state is critical if the 
next state is univalent 

1-valent 
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Reaching a Critical State  

 

• The system can remain bivalent forever if there is always an action that 
prevents the system from reaching a critical state: 

 

b 

b 1 

A moves B moves 

b 

B moves 

b 

A moves 

B moves 

B moves 

A moves 

1 

0 
A moves 

1-valent 

0-valent 
1-valent 
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Model Dependency 

 

• So far, everything was memory-independent! 

 

• True for 

– Registers 

– Message-passing 

– Carrier pigeons 

– Any kind of asynchronous computation 

 

• Threads 

– Perform reads and/or writes 

– To the same or different registers 

– Possible interactions? 

1/44 

Possible Interactions 

x.read() y.read() x.write() y.write() 

x.read() 

 

? ? ? ? 

y.read() 

 

? ? ? ? 

x.write() 

 

? ? ? ? 

y.write() 

 

? ? ? ? 

A reads x 

B writes y 
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Reading Registers 

B reads x 

= 

c 

States look the same to A 

A runs solo, decides 

A runs solo, decides 

1 0 

= 
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Possible Interactions 

x.read() y.read() x.write() y.write() 

x.read() 

 

no no no no 

y.read() 

 

no no no no 

x.write() 

 

no no ? ? 

y.write() 

 

no no ? ? 
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Writing Distinct Registers 

A writes y 

= 

c 

States look the same to A 

A writes y B writes x 

B  writes x 1 0 

= 
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Possible Interactions 

x.read() y.read() x.write() y.write() 

x.read() 

 

no no no no 

y.read() 

 

no no no no 

x.write() 

 

no no ? no 

y.write() 

 

no no no ? 
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Writing Same Registers 

States look the same to A 

A writes x B writes x 

A runs solo, decides 

c 

= 

A runs solo, decides 
A writes x 

1 0 

= 
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That’s All, Folks! 

x.read() y.read() x.write() y.write() 

x.read() 

 

no no no no 

y.read() 

 

no no no no 

x.write() 

 

no no no no 

y.write() 

 

no no no no 
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What Does Consensus Have to Do With Distributed Systems? 

 

• We want to build a concurrent FIFO Queue with multiple dequeuers 
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A Consensus Protocol 

2-element array 

FIFO Queue with red and 
black balls 

8 

Coveted red ball Dreaded black ball 

 

• Assume we have such a FIFO queue and a 2-element array 
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A Consensus Protocol 

0 1 

0 

 

• Thread i writes its value into the array at position i 
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0 

A Consensus Protocol 

0 1 

8 

 

• Then, the thread takes the next element from the queue 
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0 1 

A Consensus Protocol 

I got the coveted red ball, 
so I will decide my value 

I got the dreaded black ball, 
so I will decide the other’s 

value from the array 

8 
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A Consensus Protocol 

 

Why does this work? 

 

• If one thread gets the red ball, then the other gets the black ball 

• Winner can take its own value 

• Loser can find winner’s value in array 

– Because threads write array before dequeuing from queue 

 

 

Implication 

 

• We can solve 2-thread consensus using only 

– A two-dequeuer queue 

– Atomic registers 
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Implications 

 

• Assume there exists 

– A queue implementation from atomic registers 

• Given 

– A consensus protocol from queue and registers 

• Substitution yields 

– A wait-free consensus protocol from atomic registers 

 

 

Corollary 

 

• It is impossible to implement a two-dequeuer wait-free FIFO queue with 
read/write shared memory. 

• This was a proof by reduction; important beyond NP-completeness… 
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Consensus #3: Read-Modify-Write Shared Memory 

 

• n > 1 processors 

• Wait-free implementation 

• Processors can read and write a shared memory cell in one atomic step: 
the value written can depend on the value read 

• We call this a read-modify-write (RMW) register 

• Can we solve consensus using a RMW register…? 
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Consensus Protocol Using a RMW Register 

 

• There is a cell c, initially c=“?” 

• Every processor i does the following 
 
 
 
if (c == “?”) then 
  write(c, vi); decide vi 
else 
  decide c; 

 
atomic step 

RMW(c) 
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Discussion 

 

• Protocol works correctly 

– One processor accesses c first; this processor will determine decision 

• Protocol is wait-free 

• RMW is quite a strong primitive 

– Can we achieve the same with a weaker primitive? 
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Read-Modify-Write More Formally 

 

• Method takes 2 arguments: 

– Cell c 

– Function f 

• Method call: 

– Replaces value x of cell c with f(x) 

– Returns value x of cell c 

 

1/62 

public class RMW { 
  private int value; 
 
  public synchronized int rmw(function f) { 
    int prior  = this.value; 
    this.value = f(this.value);  
    return prior; 
  } 
 
} 

Read-Modify-Write 

Return prior value 

Apply function 
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Read-Modify-Write: Read 

public class RMW { 
  private int value; 
 
  public synchronized int read() { 
    int prior  = this.value; 
    this.value = this.value;  
    return prior; 
  } 
 
} 

Identify function 
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Read-Modify-Write: Test&Set 

public class RMW { 
  private int value; 
 
  public synchronized int TAS() { 
    int prior  = this.value; 
    this.value = 1;  
    return prior; 
  } 
 
} 

Constant function 
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Read-Modify-Write: Fetch&Inc 

public class RMW { 
  private int value; 
 
  public synchronized int FAI() { 
    int prior  = this.value; 
    this.value = this.value+1;  
    return prior; 
  } 
 
} 

Increment function 
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Read-Modify-Write: Fetch&Add 

public class RMW { 
  private int value; 
 
  public synchronized int FAA(int x) { 
    int prior  = this.value; 
    this.value = this.value+x;  
    return prior; 
  } 
 
} 

Addition function 

1/67 

Read-Modify-Write: Swap 

public class RMW { 
  private int value; 
 
  public synchronized int swap(int x) { 
    int prior  = this.value; 
    this.value = x;  
    return prior; 
  } 
 
} 

Set to x 

1/68 

Read-Modify-Write: Compare&Swap 

public class RMW { 
  private int value; 
 
  public synchronized int CAS(int old, int new) { 
    int prior  = this.value; 
    if(this.value == old) 
      this.value = new;  
    return prior; 
  } 
 
} 

“Complex” function 
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Definition of Consensus Number 

 

• An object has consensus number n 

– If it can be used 

– Together with atomic read/write registers 

– To implement n-thread consensus, but not (n+1)-thread consensus 

 

• Example: Atomic read/write registers have consensus number 1 

– Works with 1 process 

– We have shown impossibility with 2 
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Consensus Number Theorem 

 

 

 

 

 

 

 

• Consensus numbers are a useful way of measuring synchronization power 

• An alternative formulation: 

– If X has consensus number c 

– And Y has consensus number d < c 

– Then there is no way to construct a 
wait-free implementation of X by Y 

• This theorem will be very useful 

– Unforeseen practical implications! 

 

Theorem 

If you can implement X from Y 
and X has consensus number c, 

then Y has consensus number at least c 
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Theorem 

 

• A RMW is non-trivial if there exists a value v such that v ≠ f(v) 

– Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW… 

– But not read 

 

 

 

 

 

 

 

• Implies no wait-free implementation of RMW registers from read/write 
registers 

• Hardware RMW instructions not just a convenience 

Theorem 

Any non-trivial RMW object has 
consensus number at least 2 

1/72 

Proof 

public class RMWConsensusFor2 implements Consensus{ 
  private RMW r; 
 
  public Object decide() { 
    int i  = Thread.myIndex(); 
    if(r.rmw(f) == v) 
      return this.announce[i]; 
    else 
   return this.announce[1-i]; 
  } 
 
} 

 

• A two-thread consensus protocol using any non-trivial RMW object: 

Initialized to v 

Am I first? 

Yes, return 
my input 

No, return 
other’s input 
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Interfering RMW 

 

• Let F be a set of functions such that for all fi and fj, either 

– They commute: fi(fj(x))=fj(fi(x)) 

– They overwrite: fi(fj(x))=fi(x) 

• Claim: Any such set of RMW objects has consensus number exactly 2 

 

 

Examples: 

 

• Overwrite 

– Test&Set , Swap 

• Commute 

– Fetch&Inc, Fetch&Add 

 

fi(x) = new value of cell 
(not return value of fi) 
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Proof 

c A about to apply fA B about to apply fB 

 

• There are three threads, A, B, and C 

• Consider a critical state c: 

 

 

0-valent 1-valent 
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Proof: Maybe the Functions Commute 

c 

0-valent 

A applies fA B applies fB 

A applies fA B applies fB 

C runs solo C runs solo 

1-valent 

1 0 
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Proof: Maybe the Functions Commute 

c 
A applies fA B applies fB 

A applies fA B applies fB 

C runs solo 

These states look the same to C 

C runs solo 

0-valent 1-valent 
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Proof: Maybe the Functions Overwrite 

c 
A applies fA B applies fB 

A applies fA C runs solo 

0-valent 1-valent 

C runs solo 

1 0 
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Proof: Maybe the Functions Overwrite 

These states look the same to C 

c 

0-valent 1-valent 

C runs solo 

C runs solo 

A applies fA B applies fB 

A applies fA 
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Impact 

 

• Many early machines used these “weak” RMW instructions 

– Test&Set (IBM 360) 

– Fetch&Add (NYU Ultracomputer) 

– Swap 

 

• We now understand their limitations 
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public class RMWConsensus implements Consensus { 
  private RMW r; 
 
  public Object decide() { 
    int i = Thread.myIndex(); 
    int j = r.CAS(-1,i);  
    if(j == -1) 
   return this.announce[i]; 
 else 
   return this.announce[j]; 
  } 
 
} 

Consensus with Compare & Swap 

Initialized to -1 

Am I first? 

Yes, return 
my input 

No, return 
other’s input 
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The Consensus Hierarchy 

1 

• Read/Write 
Registers 

2 

• Test&Set 

• Fetch&Inc 

• Fetch&Add 

• Swap 

… ∞ 

• CAS 

• LL/SC 
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Consensus #4: Synchronous Systems 

 

• One can sometimes tell if a processor had crashed 

– Timeouts 

– Broken TCP connections 

• Can one solve consensus at least in synchronous systems? 

• Model 

– All communication occurs 
in synchronous rounds 

– Complete communication graph 

p1 

p2 

p3 

p4 p5 
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Crash Failures 

p1 

p2 

p3 

p4 p5 

a 

a 

a a 

a 

a 

a a 

 

• Broadcast: Send a Message to All Processes in One Round 

– At the end of the round everybody receives the message a 

– Every process can broadcast a value in each round 

• Crash Failures: A broadcast can fail if a process crashes 

– Some of the messages may be lost, i.e., they are never received 

 

 

 

p1 

p2 

p3 

p4 p5 

a 

a 

a 

a 

Faulty 
Processor 
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After a Failure, the Process Disappears from the Network 

p1 

p3 

p4 

p5 

Failure 

Round 1 Round 2 Round 3 Round 4 Round 5 

p2 

p1 

p3 

p4 

p5 

p2 

p1 

p3 

p4 

p5 

p2 

p1 

p3 

p4 

p5 

p2 

p1 

p3 

p4 

p5 

p2 
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Consensus Repetition 

 

• Everybody has an initial value 

• Everybody must decide on the same value 

 

 

 

 

 

 

 

 

 

 

• Validity conditon: 
If everybody starts with the same value, they must decide on that value 

2 

2 

2 

2 2 

Finish 

1 

0 

4 

3 2 

Start 
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Each process: 
 
1. Broadcast own value 

 
2. Decide on the minimum of all received values 

A Simple Consensus Algorithm 

Including the 
own value 

Note that only one 
round is needed! 
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Execution Without Failures 

 

• Broadcast values and decide on minimum  Consensus! 

• Validity condition is satisfied: If everybody starts with the same initial 
value, everybody sticks to that value (minimum) 

 

1 

0 

4 

3 2 

0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 

0 

0 

0 

0 0 
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Execution With Failures 

 

• The failed processor doesn’t broadcast its value to all processors 

• Decide on minimum  No consensus! 

1 

0 

4 

3 2 

0,1,2,3,4 1,2,3,4 

1,2,3,4 0,1,2,3,4 

0 

0 

1 

0 1 

fail 
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f-resilient Consensus Algorithm 

 

• If an algorithm solves consensus for f failed processes, we say it is an 
f-resilient consensus algorithm 

• Example: The input and output of a 3-resilient consensus algorithm: 

 

 

 

 

 

 

 

 

 

 

• Refined validity condition: 
All processes decide on a value that is available initially 

 

1 

1 

Finish 

1 

0 

2 

3 4 

Start 
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Each process: 
 
Round 1: 
Broadcast own value 
 
Round 2 to round f+1: 
Broadcast the minimum of received values unless it has been sent before 
 
End of round f+1: 
Decide on the minimum value received 

An f-resilient Consensus Algorithm 
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An f-resilient Consensus Algorithm 

 

• Example: f=2 failures, f+1 = 3 rounds needed 

1 

0 

4 

3 2 
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An f-resilient Consensus Algorithm 

 

• Round 1: Broadcast all values to everybody 

1 

0 

4 

3 2 

1,2,3,4 1,2,3,4 

1,2,3,4 0,1,2,3,4 

Failure 1 

0 
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An f-resilient Consensus Algorithm 

 

• Round 2: Broadcast all new values to everybody 

1 4 

3 2 

0,1,2,3,4 1,2,3,4 

1,2,3,4 0,1,2,3,4 

Failure 1 

0 

Failure 2 
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An f-resilient Consensus Algorithm 

 

• Round 3: Broadcast all new values to everybody 

1 4 

2 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 

Failure 1 

0 

Failure 2 

0 
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An f-resilient Consensus Algorithm 

 

• Decide on minimum  Consensus! 

0 0 

0 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 

Failure 1 

0 

Failure 2 

0 
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1 2 

No failure 

3 4 5 6 

Analysis 

 

• If there are f failures and f+1 rounds, then there is a round with no failed 
process 

• Example: 5 failures, 6 rounds: 
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Analysis 

 

• At the end of the round with no failure 

– Every (non faulty) process knows about all the values of all the other 
participating processes 

– This knowledge doesn’t change until the end of the algorithm 

• Therefore, everybody will decide on the same value 

• However, as we don’t know the exact position of this round, we have to 
let the algorithm execute for f+1 rounds 

 

• Validity: When all processes start with the same input value, then 
consensus is that value 
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Theorem 

  

 

 

 

 

 

 

 

 

Proof sketch: 
 

• Assume for contradiction that f or less rounds are enough 

• Worst-case scenario: There is a process that fails in each round 

Theorem 

Any f-resilient consensus algorithm 
requires at least f+1 rounds 

Note that this is 
not a formal proof! 
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Round 

a 

1 2 

Worst-case Scenario 

 

pk 

pm 

• Before process pi fails, it sends its 
value a only to one process pk 

• Before process pk fails, it sends its 
value a to only one process pm 

a 
pi 
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Round 1 2 

…… 

a 

f 3 

Worst-case Scenario 

 

pf 

pn 

• At the end of 
round f only one 
process pn knows 
about value a 
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Round 1 2 

…… 

a 

f 3 

Worst-case Scenario 

 

pf 

pn 

decide 

a 

b 

• Process pn may 
decide on a and all 
other processes 
may decide on 
another value b 

• Therefore f rounds 
are not enough  
At least f+1 rounds 
are needed 
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Arbitrary Behavior 

 

• The assumption that processes crash and stop forever is sometimes too 
optimistic 

 

• Maybe the processes fail 
and recover: 

 

 

 

 

 

• Maybe the processes are 
damaged: 

 

Are you there? Probably 
not… 

??? Are you there? 

Time 

c 

a! 

b! 
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Consensus #5: Byzantine Failures 

p1 

p2 

p3 

p4 p5 

a 

b 

# 

Faulty 
processor 

 

• Different processes may receive different values 

• A Byzantine process can behave like a crash-failed process 
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After a Failure, the Process Remains in the Network 

p1 

p3 

p4 

p5 

Failure 

p2 

p1 

p3 

p4 

p5 

p2 

p1 

p3 

p4 

p5 

p2 

p1 

p3 

p4 

p5 

p2 

p1 

p3 

p4 

p5 

p2 

Round 1 Round 2 Round 3 Round 4 Round 5 
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Consensus with Byzantine Failures 

  

• Again: If an algorithm solves consensus for f failed processes, we say it is an 
f-resilient consensus algorithm 

 

• Validity condition: If all non-faulty processes start with the same value, 
then all non-faulty processes decide on that value 

– Note that in general this validity condition does not guarantee that the final 
value is an input value of a non-Byzantine process 

– However, if the input is binary, then the validity condition ensures that 
processes decide on a value that at least one non-Byzantine process had 
initially 

 

•  Obviously, any f-resilient consensus algorithm requires at least f+1 rounds 
(follows from the crash failure lower bound) 

• How large can f be…? Can we reach consensus as long as 
the majority of processes is correct (non-Byzantine)? 
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Theorem 

Theorem 

  

 

 

 

 

 

 

 

Proof outline: 

 

•  First, we prove the 3 processes case 

•  The general case can be proved by reducing it to the 3 processes case 

There is no f-resilient algorithm for n processes, 
where f ≥ n/3 
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The 3 Processes Case 

 

 

 

 

 

Proof: 

Lemma 

There is no 1-resilient algorithm for 3 processes 

C A 

B 

• Intuition:  

• Process A may also receive information 
from C about B’s messages to C 

• Process A may receive conflicting  
information about B from C and about 
C from B (the same for C!) 

• It is impossible for A and C to decide 
which information to base their 
decision on! 

 

Byzantine 

? ? 
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Proof 

 

• Assume that both A and C have input 
0. If they decided 1, they could violate 
the validity condition  A and C must 
decide 0 independent of what B says 

• Similary, A and C must decide 1 if 
their inputs are 1 

• We see that the processes must base 
their decision on the majority vote 

 

• If A’s input is 0  and B tells A 
that its input is 0  A decides 0 

• If C’s input is 1 and B tells C 
that its input is 1  C decides 1 C:1 A:0 

B 

0 
0 1 

1 

0! 1! 

C:0 A:0 

B 

0 
0 

1 1 
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The General Case 

 

• Assume for contradiction that there is an f-resilient algorithm A for n 
processes, where f ≥ n/3 

• We use this algorithm to solve the consensus algorithm for 3 processes 
where one process is Byzantine! 

• If n is not evenly divisible by 3, we increase it by 1 or 2 to ensure that n is a 
multiple of 3 

• We let each of the three processes simulate n/3 processes 
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The General Case 

 

• One of the 3 processes is Byzantine  Its n/3 simulated processes may all 
behave like Byzantine processes 

• Since algorithm A tolerates n/3 Byzantine failures, it can still reach 
consensus  We solved the consensus problem for three processes! 

Consensus! Consensus! 
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Consensus #6: A Simple Algorithm for Byzantine Agreement 

 

• Can the processes reach consensus if n > 3f? 

• A simpler question: Can the processes reach consensus if n=4 and f=1? 

• The answer is yes. It takes two rounds: 

 

 

 

 

 

 

 

 

 

 
 

            [matrix: one column for each original value, one row for each neighbor] 

1 

2 3 

Round 1: Exchange all values 

1,.,2,3 

0,1,2,. 2,1,.,3 

Round 2: Exchange the received info 

1 

2 3 

1,1,3,0 
2,1,2,3 
0,1,2,3 

0,3,1,3 
1,1,2,3 
2,1,2,3 

2,0,2,1 
1,1,2,3 
0,1,2,3 
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A Simple Algorithm for Byzantine Agreement 

 

• After the second round each node has received 12 values, 3 for each of the 
4 input values (columns). If at least 2 of 3 values of a column are equal, this 
value is accepted. If all 3 values are different, the value is discarded 

• The node then decides on the minimum accepted value 

 

1 

1 1 

1,1,3,0 
2,1,2,3  x,1,2,3 
0,1,2,3 

0,3,1,3 
1,1,2,3  x,1,2,3 
2,1,2,3 

2,0,2,1 
x,1,2,3      1,1,2,3 

0,1,2,3 

Consensus! 
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A Simple Algorithm for Byzantine Agreement 

 

• Does this algorithm still work in general for any f and n > 3f ? 

• The answer is no. Try f=2 and n=7: 

 

 

 

 

 

 

 

 

 

 

• The problem is that q can say different things about what p sent to q! 

• What is the solution to this problem? 

p 1 0 

0 q 1 1 

1 0 

0 
1 

1 

Round 1: Exchange all values Round 2: Exchange the received info 

p 1 0 

0 q 1 1 

p said 0 

p said 0 

p said 1 

p said 1 

p said 1 

Majority 
says 0! 

Majority 
says 1! 
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A Simple Algorithm for Byzantine Agreement 

 

• The solution is simple: Again exchange all information! 

• This way, the processes can learn that q gave inconsistent information 
about p  q can be excluded, and also p if it also gave inconsistent 
information (about q). 

• If f=2 and n > 6, consensus can be reached in 3 rounds! 

• In fact, the algorithm 

 

 

 

 

 

 solves the problem for any f and any n > 3f 

 

 

Exchange all information for f+1 rounds 
Ignore all processes that provided inconsistent information 
Let all processes decide based on the same input 

1/115 

A Simple Algorithm for Byzantine Agreement: Summary 

 

• The proposed algorithm has several advantages: 

+ It works for any f and n > 3f, which is optimal 

+ It only takes f+1 rounds. This is even optimal for crash failures! 

+ It works for any input and not just binary input 

 

• However, it has some considerable disadvantages: 

- ‘‘Ignoring all processes that provided inconsistent information’’ is not easy 
to formalize 

- The size of the messages increases exponentially! This is a severe problem 
It is worth studying whether it is possible to solve the problem with 
small(er) messages 
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Consensus #7: The Queen Algorithm 

  

• The Queen algorithm is a simple Byzantine agreement algorithm that uses 
small messages 

• The Queen algorithm solves consensus with n processes and f failures 
where f < n/4 in f+1 phases 

 

 

Idea: 

 

•  There is a different (a priori known) queen in each phase 

• Since there are f+1 phases, in one phase the queen is not Byzantine 

• Make sure that in this round all processes choose the same value and that 
in future rounds  the processes do not change their values anymore  

A phase consists 
of 2 rounds 
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In each phase i ϵ 1...f+1: 
 
Round 1: 
Broadcast own value 
Set own value to the value that was received most often 
If own value appears > n/2+f times 
 support this value 
else 
 do not support any value 
 
Round 2: 
The queen broadcasts its value 
If not supporting any value 
  set own value to the queen’s value 

The Queen Algorithm 

At the end of phase f+1, 
decide on own value 

Also send own 
value to oneself 

If several values have 
the same (highest) 

frequency, choose any 
value, e.g., the smallest 
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2 

1 

0 

0 

1 

 

• Example: n = 6, f=1 

• Phase 1, round 1 (All broadcast): 

0,0,0,1,1,2 

0,0,0,1,1,2 

0,0,1,1,1,2 

0,0,0,1,1,2 

0,0,1,1,1,2 

0 
0 

1 

1 

0 

The Queen Algorithm: Example 

No process 
supports a value 

Majority value 

All received values 
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• Phase 1, round 2 (Queen broadcasts): 

 

The Queen Algorithm: Example 

2 

1 

0 

0 

1 

2 
1 

0 

1 

0 

All processes choose 
the queen’s value 
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• Phase 2, round 1 (All broadcast) 

The Queen Algorithm: Example 

2 

1 

0 

0 

1 
0,0,0,1,1,2 

0,0,0,1,1,2 

0,0,1,1,1,2 

0,0,0,1,1,2 

0,0,1,1,1,2 

0 
0 

1 

1 

0 

No process 
supports a value 
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• Phase 2, round 2 (Queen broadcasts): 

The Queen Algorithm: Example 

0 

0 

0 

0 

0 

0 

0 

0 

0 

All processes choose 
the queen’s value 

0 

Consensus! 
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• After the phase where the queen is correct, all correct processes have the 
same value 

– If all processes change their values to the queen’s value, obviously all values 
are the same 

– If some process does not change its value to the queen’s value, it received a 
value > n/2+f times  All other correct processes (including the queen) 
received this value > n/2 times and thus all correct processes share this value 

• In all future phases, no process changes its value 

– In the first round of such a phase, processes receive their own value from at 
least n-f > n/2 processes and thus do not change it 

– The processes do not accept the queen’s proposal if it differs from their own 
value in the second round because the processes received their own value at 
least n-f > n/2+f times. Thus, all correct processes support the same value 

That’s why we 
need f < n/4! 

The Queen Algorithm: Analysis 
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The Queen Algorithm: Summary 

 

• The Queen algorithm has several advantages: 

+ The messages are small: processes only exchange their current values 

+ It works for any input and not just binary input 

 

• However, it also has some disadvantages: 

- The algorithm requires f+1 phases consisting of 2 rounds each 
This is twice as much as an optimal algorithm 

- It only works with f < n/4 Byzantine processes! 

 

• Is it possible to get an algorithm that works with f < n/3 Byzantine 
processes and uses small messages? 
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Consensus #8: The King Algorithm 

  

• The King algorithm is an algorithm that tolerates f < n/3 Byzantine failures 
and uses small messages 

• The King algorithm also takes f+1 phases 

 

Idea: 

 

• The basic idea is the same as in the Queen algorithm 

•  There is a different (a priori known) king in each phase 

• Since there are f+1 phases, in one phase the king is not Byzantine 

• The difference to the Queen algorithm is that the correct processes only 
propose a value if many processes have this value, and a value is only 
accepted if many processes propose this value 

A phase now 
consists of 3 rounds 
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In each phase i ϵ 1...f+1: 
 
Round 1: 
Broadcast own value 
 
Round 2: 
If some value x appears ≥ n-f times 
 Broadcast “Propose x” 
If some proposal received > f times 
 Set own value to this proposal 
 
Round 3: 
The king broadcasts its value 
If own value received < n-f proposals 
  Set own value to the king’s value 

The King Algorithm 

At the end of phase f+1, 
decide on own value 

Also send own 
value to oneself 

1/126 

 

• Example: n = 4, f=1 

• Phase 1: 

The King Algorithm: Example 

All processes choose 
the king’ value 

0 

1 1 

0,0,1,1 

1 
0 

0 

0,0,1,1 0,1,1,1 

0 

1 1 1* 

0* 1 

0 1 

1 
0 

1 

0* = “Propose 0” 
1* = “Propose 1” 

 

Round 1 Round 2 Round 3 

1* 

1* 
1* 

1* 

2 propose 1 

 
2 propose 1 

 

1 proposal each 

 

“Propose 1” 
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• Example: n = 4, f=1 

• Phase 2: 

The King Algorithm: Example 

1 

0 1 

0,1,1,1 

1 
0 

1 

0,0,1,1 0,1,1,1 

1 

1 1 1* 

1 

1 1 

1 
1 

1 

0* = “Propose 0” 
1* = “Propose 1” 

 

Round 1 Round 2 Round 3 

1* 

1* 

1* 

2 propose 1 

 
2 propose 1 

 

3 propose 1 

 

1* 

“Propose 1” 

“Propose 1” 

1* 

I take the 
king’s value! 

I keep my 
own value! 

Consensus! 

Set to 1! 
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• Observation: If some correct process proposes x, then no other correct 
process proposes y ≠ x 

– Both processes would have to receive ≥ n-f times the same value, i.e., both 
processes received their value from ≥ n-2f distinct correct processes  

– In total, there must be ≥ 2(n-2f) + f > n processes, a contradiction! 

 

 

• The validity condition is satisfied 

– If all correct processes start with the same value, all correct processes receive 
this value ≥ n-f times and propose it 

– All correct processes receive ≥ n-f times proposals, i.e., no correct process will 
ever change its value to the king’s value 

We used 
that f < n/3! 

The King Algorithm: Analysis 
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• After the phase where the king is correct, all correct processes have the 
same value 

– If all processes change their values to the king’s value, obviously all values are 
the same 

– If some process does not change its value to the king’s value, it received a 
proposal ≥ n-f times  ≥ n-2f correct processes broadcast this proposal and 
all correct processes receive it ≥ n-2f > f times  All correct processes set 
their value to the proposed value. Note that only one value can be proposed 
> f times, which follows from the observation on the previous slide 

• In all future phases, no process changes its value 

– This follows immediately from the fact that all correct processes have the 
same value after the phase where the king is correct and the validity 
condition 

The King Algorithm: Analysis 
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The King Algorithm: Summary 

 

• The King algorithm has several advantages: 

+ It works for any f and n > 3f, which is optimal 

+ The messages are small: processes only exchange their current values 

+ It works for any input and not just binary input 

 

• However, it also has a disadvantage: 

- The algorithm requires f+1 phases consisting of 3 rounds each 
This is three times as much as an optimal algorithm 

 

• Is it possible to get an algorithm that uses small messages and requires 
fewer rounds of communication? 
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Consensus #9: Byzantine Agreement Using Authentication 

 

• A simple way to reach consensus is to use authenticated messages 

 

• Unforgeability condition: If a process never sends 
a message m, then no correct process ever accepts m 

 

• Why is this condition helpful? 

– A Byzantine process cannot convince a correct process that some other 
correct processes voted for a certain value if they did not! 

 

• Idea: 

 

• There is a designated process P. The goal is to decide on P’s value 

• For the sake of simplicity, we assume a binary input. The default value is 
0, i.e., if P cannot convince the processes that P’s input is 1, everybody 
chooses 0 

 

w 

v 

0 

0 0 

v said 1 

w must 
be lying! 
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Byzantine Agreement Using Authentication 

If I am P and own input is 1 
      value :=1 
      broadcast “P has 1” 
else 
      value := 0 
 
In each round r ϵ 1...f+1: 
 
If value = 0 and accepted r messages “P has 1” in total including a message 
from P itself 
      value := 1 
      broadcast “P has 1” plus the r accepted messages that caused the 
      local value to be set to 1 
 
After f+1 rounds: 
 
Decide value 

In total r+1 authenticated 
“P has 1”  messages 
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• Assume that P is correct 

– P’s input is 1: All correct processes accept P’s message in round 1 and set 
value to 1. No process ever changes its value back to 0  

– P’s input is 0: P never sends a message “P has 1”, thus no correct process ever 
sets its value to 1 

• Assume that P is Byzantine 

– P tries to convince some correct processes that its input is 1 

– Assume that a correct process p sets its value to 1 in a round r < f+1: 
Process p has accepted r messages including the message from P.  Therefore, 
all other correct processes accept the same r messages plus p’s message and 
set their values to 1 as well in round r+1 

– Assume that a correct process p sets its value to 1 in round f+1: 
In this case, p accepted f+1 messages. At least one of those is sent by a 
correct process, which must have set its value to 1 in an earlier round. We are 
again in the previous case, i.e., all correct processes decide 1! 

Byzantine Agreement Using Authentication: Analysis 
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Byzantine Agreement Using Authentication: Summary 

 

• Using authenticated messages has several advantages: 

+ It works for any number of Byzantine processes! 

+ It only takes f+1 rounds, which is optimal 

+ Small messages: processes send at most f+1 “short” messages to all other 
processes in a single round 

 

• However, it also has some disadvantages: 

- If P is Byzantine, the processes may agree on a value that is not in the 
original input  

- It only works for binary input 

- The algorithm requires authenticated messages… 

sub-exponential length 
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Byzantine Agreement Using Authentication: Improvements 

 

• Can we modify the algorithm so that it satisfies the validity condition? 

– Yes! Run the algorithm in parallel for 2f+1 “masters” P. Either 0 or 1 occurs at 
least f+1 times, i.e., at least one correct process had this value. Decide on this 
value! 

– Alas, this modified protocol only works if f < n/2 

• Can we modify the algorithm so that it also works with an arbitrary input? 

– Yes! In fact, the algorithm does not have to be changed much 

– We won’t discuss this modification in class 

• Can we get rid of the authentication? 

– Yes! Use consistent-broadcast. This technique is not discussed either 

–  This modified protocol works if f < n/3, which is optimal 

– However, each round is split into two 
 The total number of rounds is 2f+2 
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Consensus #10: A Randomized Algorithm 

 

• So far we mainly tried to reach consensus in synchronous systems. The 
reason is that no deterministic algorithm can guarantee consensus in 
asynchronous systems even if 
only one process may crash 

 

• Can one solve consensus in asynchronous systems if we allow our 
algorithms to use randomization? 

 

 

• The answer is yes! 

• The basic idea of the algorithm is to push the initial value. If other 
processes do not follow, try to push one of the suggested values randomly 

• For the sake of simplicity, we assume that the input is binary and at most 
f<n/9 processes are Byzantine 

Asynchronous  system: 
Messages are delayed 

indefinitely 

Synchronous system: 
Communication proceeds 

in synchronous rounds 
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Randomized Algorithm 

x := own input; r := 0 
Broadcast  proposal(x, r) 
 
In each round r = 1,2,…: 
 
Wait for n-f proposals 
If at least n-2f proposals have some value y 
 x := y; decide on y 
else if at least n-4f proposals have some value y 
 x := y; 
else 
 choose x randomly with P[x=0] = P[x=1] = ½ 
Broadcast  proposal(x, r) 
If decided on a value  stop 
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Randomized Algorithm: Analysis 

 

• Validity condition (If all have the same input, all choose this value) 

– If all correct processes have the same initial value x, they will receive n-2f 
proposals containing x in the first round and they will decide on x 

 

• Agreement (if the processes decide, they agree on the same value) 

– Assume that some correct process decides on x. This process must have 
received x from n-3f correct processes. Every other correct process must have 
received x at least n-4f times, i.e., all correct processes set their local value to 
x, and propose and decide on x in the next round 

The processes broadcast at the end 
of a phase to ensure that the 

processes that have already decided 
broadcast their value again! 
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Randomized Algorithm: Analysis 

 

• Termination (all correct processes eventually decide) 

– If some processes do not set their local value randomly, they set their local 
value to the same value. Proof: Assume that some processes set their value to 
0 and some others to 1, i.e., there are ≥ n-5f correct processes proposing 0 
and ≥ n-5f correct processes proposing 1. 
In total there are ≥ 2(n-5f) + f > n processes. Contradiction! 

 

 

– Thus, in the worst case all n-f correct processes need to choose the same bit 
randomly, which happens with probability (½)(n-f) 

– Hence, all correct processes eventually decide. The expected running time is 
smaller than 2n 

 

• The running time is awfully slow. Is there a clever way to speed up the 
algorithm? 

• What about simply setting x:=1?! (Why doesn’t it work?) 

That’s why we need f < n/9! 
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Can we do this faster?! Yes, with a Shared Coin 

 

• A better idea is to replace 

 

 

 
with a subroutine in which all the processes compute 
a so-called shared (a.k.a. common, “global”) coin 

• A shared coin is a random binary variable that is 0 
with constant probability,  and 1 with constant probability 

• For the sake of simplicity, we assume that  
there are at most f < n/3 crash failures 
(no Byzantine failures!!!) 

choose x randomly with P[x=0] = P[x=1] = ½ 

All correct processes 
know the outcome of 
the shared coin toss 
after each execution 

of the subroutine 
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Shared Coin Algorithm 

Code for process i: 
 
Set local coin ci := 0 with probability 1/n, else ci :=1 
Broadcast  ci 

Wait for exactly n-f coins and collect all coins in the local coin set si 

Broadcast si 
Wait for exactly n-f coin sets 
If at least one coin is 0 among all coins in the coin sets 
 return 0 
else 
 return 1  

Assume the worst case:  
Choose f so that 3f+1 = n! 
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• Termination (of the subroutine) 

– All correct processes broadcast their coins. It follows that all correct processes 
receive at least n-f coins  

– All correct processes broadcast their coin sets. It follows that all correct 
processes receive at least n-f coin sets and the subroutine terminates 

• We will now show that at least 1/3 of all coins are seen by everybody 

 

 

 

• More precisely: We will show that at least f+1 coins are in at least f+1 coin 
sets 

– Recall that 3f+1 = n, therefore f+1 > n/3 

– Since these coins are in at least f+1 coin sets and all processes 
receive n-f coin sets, all correct processes see these coins! 

Shared Coin: Analysis 

A coin is seen if it is in at 
least one received coin set 
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Shared Coin: Analysis 

 

• Proof that at least f+1 coins are in at least f+1 coin sets 

– Draw the coin sets and the contained coins as a matrix 

– Example: n=7, f=2 

s1 s3 s5 s6 s7 

c1 x x x x x 

c2 x x 

c3 x x x x x 

c4 x x x 

c5 x x 

c6 x x x x 

c7 x x x x 

x means coin ci is in set sj 
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Shared Coin: Analysis 

 

• At least f+1 rows (coins) have at least f+1 x’s (are in at least f+1 coin sets) 

– First, there are exactly (n-f)2 x’s in this matrix 

– Assume that the statement is wrong: Then at most f rows may be full and 
contain n-f x’s.  And all other rows (at most n−f) have at most f x’s 

– Thus, in total we have at most f(n-f)+ (n-f)f  = 2f(n-f) x’s  

– But 2f(n-f) < (n-f)2 because 2f < n-f  

s1 s3 s5 s6 s7 

c1 x x x x x 

c2 x x 

c3 x x x x x 

c4 x x x 

c5 x x 

c6 x x x x 

c7 x x x x 

Here we use 3f < n 
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Shared Coin: Theorem 

 

 

 

 

 

Proof: 

 

• With probability (1-1/n)n ≈ 1/e ≈ 0.37 all processes choose 1. Thus, all 
correct processes return 1 

• There are at least f+1 ≈ n/3 coins seen by all correct processes. 
The probability that at least one of these coins is set to 0 is at least 
1-(1-1/n)n/3 ≈ 1-(1/e)1/3 ≈ 0.28 

Theorem 

All processes decide 0 with constant probability, and 
all processes decide 1 with constant probability 
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Back to Randomized Consensus 

 

• If this shared coin subroutine is used, there is a constant probability that 
the processes agree on a value 

• Some nodes may not want to perform the subroutine because they 
received the same value x at least n-4f times. However, there is also a 
constant probability that the result of the shared coin toss is x! 

• Of course, all nodes must take part in the execution of the subroutine 

• This randomized algorithm terminates in a constant number of rounds  
(in expectation)! 
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Randomized Algorithm: Summary 

 

• The randomized algorithm has several advantages: 

+ It only takes a constant number of rounds in expectation 

+ It can handle crash failures even if communication is asynchronous 

 

• However, it also has some disadvantages: 

- It works only if there are f < n/9 crash failures. It doesn’t work if there are 
Byzantine processes 

- It only works for binary input 

 

• Can it be improved? 

- There is a constant expected time algorithm that tolerates 
f < n/2 crash failures 

- There is a constant expected time algorithm that tolerates 
f < n/3 Byzantine failures 

There are similar 
algorithms for the 

shared memory model 

1/148 

Message Complexity 

 

• In all of the previously discussed message passing algorithms, each (good) 
node broadcasts. Message complexity is Ω 𝑛2 . 

 

• “The communication overhead of Byzantine Agreement is inherently 
large” (Cheng et al. 2009) 

 

• Can the message complexity be improved? 

+ Yes! 

+ Byzantine Agreement can be solved in a synchronous environment with 
Õ 𝑛 𝑛  messages. 

 Requires polylogarithmic time. 
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Byzantine AND Asynchronous? 

• Are there algorithms that can solve Byzantine agreement in an 
asynchronous environment? 

 

+ Yes, there are. 

 

 However, the solution comes with a cost. The fraction of nodes that can 
be Byzantine decreases to 1/35715. Also, the expected message 
complexity of the state of the art algorithm is 𝑂 𝑛3 . 

 

+ Message sizes remain polynomial. 

 

+ The algorithm does not use a global coin, but tries to detect (biased) 
local coinflips from Byzantine processes. 
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Summary 

 

• We have solved consensus in a variety of models 

• In particular we have seen 

– algorithms 

– wrong algorithms 

– lower bounds 

– impossibility results 

– reductions 

– etc. 

 

• In the next part, we will discuss fault-tolerance in practice 
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Consensus: Decision Tree 

Shared memory? 

Wait-free? Synchronous? 

RMW? Authenticated? #1 Randomized? 

#2 

f < n/3? 

#3 Byzantine? #2 #10 #9 

#4 

#5 #6,8 

Y N 

Y N Y N 

Y N Y N Y N 

Y N 

Y N 

Message passing 

Also #7 if f < n/4 
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That’s all, folks! 
Questions & Comments? 


