
ETH Zurich – Distributed Computing – www.disco.ethz.ch 

Roger Wattenhofer 

Weak Consistency 
Part 2, Chapter 3 



3/2 

Overview 

 

• CAP: Consistency or Availability? 

• Consistency Models 

• Peer-to-Peer 

• Distributed Storage 

• Bitcoin 



3/3 

How to make sites responsive? 



3/4 

Goals of Replication 

 

• Fault-Tolerance 

– That’s what we have been looking at so far... 

– Databases 

– We want to have a system that looks like a 
single node, but can tolerate node failures, etc. 

– Consistency is important („better fail the whole 
system than giving up consistency!“) 

 

• Performance 

– Single server cannot cope with millions of client 
requests per second 

– Large systems use replication to distribute load 

– Availability is important (that’s a major reason 
why we have replicated the system...) 

– Can we relax the notion of consistency? 

 



3/5 

Example: Bookstore 

 

 

What should the system provide? 

 

• Consistency 
For each user the system behaves correctly 

 

• Availability 
If a user clicks on a book in order to put it in his 
shopping cart, the user does not have to wait for the 
system to respond. 

 

• Partition Tolerance 
If the European and the American datacenter lose 
contact, the system should still operate. 

 

How would you do that? 

 

 

Consider a bookstore that sells its books over the world wide web: 



3/6 

Theorem 

CAP-Theorem 

 

 

 

 

 
 

It is impossible for a distributed computer system to simultaneously 
provide Consistency, Availability and Partition Tolerance.  

A distributed system can satisfy any two of these guarantees at the 
same time but not all three. 



3/7 

CAP-Theorem: Proof 

 

 

 

 

 

 

 

 

 

• N1 and N2 are networks which both share a piece of data v.  

 

• Algorithm A writes data to v and algorithm B reads data from v. 

 

• If a partition between N1 and N2 occurs, there is no way to ensure consistency and 
availability:  Either A and B have to wait for each other before finishing (so 
availability is not guaranteed) or inconsistencies will occur. 

 

 

 

 

 

 

 

 

 



3/8 

CAP-Theorem: Consequences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, what would you prefer? 

Partition 

Drop Consistency 
Accept that things will become 
„Eventually consistent“ 
(e.g. bookstore: If two orders for 
the same book were received, 
one of the clients receives a 
back-order) 

Drop Availability 
Wait until data is consistent and 
therefore remain unavailable 
during that time. 
 



3/9 



3/10 



3/11 

• Network failure in the WAN 

CAP-Theorem: Criticism 

 

 

 

 

 

 
 

• Application Errors 
• Repeatable DBMS errors 
• A disaster (local cluster wiped out) 

CAP-Theorem does not apply 

• Unrepeatable DBMS errors 
• Operating system errors 
• Hardware failure in local cluster 
• A network partition in a local cluster 

Mostly cause a single node to fail 
(can be seen as a degenerated case 

of a network partition) 
 

This is easily survived by lots of 
algorithms 

Very rare! 

Conclusion: Better giving up availability than sacrificing consistency 



3/12 

 
 

• Basically Available 

• Soft State 

• Eventually consistent 

 

BASE is a counter concept to ACID. 

The system may be in an inconsistent 
state, but will eventually become 
consistent. 

ACID and BASE 

 
 

• Atomicity: All or Nothing: Either a 
transaction is processed in its 
entirety or not at all 

 

• Consistency: The database remains 
in a consistent state 

 

• Isolation: Data from transactions 
that are not yet completed cannot be 
read by other transactions  

 

• Durability: If a transaction was 
successful it stays in the system 
(even if system failures occur) 

ACID  BASE 



3/13 

ACID vs. BASE 

 
 

• Strong 
consistency 

• Pessimistic 
• Focus on commit 
• Isolation 
• Difficult schema 

evolution 

 
 
• Weak consistency 
• Optimistic 
• Focus on 

availability 
• Best effort 
• Flexible schema 

evolution 
• Approximate 

answers okay 
• Faster 
• Simpler? 

ACID  BASE 



3/14 

Consistency Models (Client View) 

• Interface that describes the  
system behavior 

 

• Recall: Strong consistency 

– After an update of process A completes, any subsequent access (by A, B, C, 
etc.) will return the updated value. 

 

• Weak consistency 

– Goal: Guarantee availability and some „reasonable amount“ of consistency!  

– System does not guarantee that subsequent accesses will return the updated 
value.  

 

 

 

 

 

What kind of guarantees would you definitely expect  
from a real-world storage system? 



3/15 

Examples of Guarantees We Might Not Want to Sacrifice... 

 

• If I write something to the storage, I 
want to see the result on a subsequent 
read. 

 

 

• If I perform two read operations on the 
same variable, the value returned at 
the second read should be at least as 
new as the value returned by the first 
read. 

 

• Known data-dependencies should be 
reflected by the values read from the 
storage system. 

? 



3/16 

Weak Consistency 

 

• A considerable performance gain can result if messages are transmitted 
independently, and applied to each replica whenever they arrive.  

– But: Clients can see inconsistencies that would never happen with 
unreplicated data. 

 

 

A X Y B 

write(u2:=7) 

snapshot() 

(u0:0, u1:0, u2:7, u3:2) 

write(u1:=5) 

write(u3:=2) 

snapshot() 

(u0:0, u1:5, u2:0, u3:0) 

This execution is NOT 
sequentially consistent 



3/17 

Weak Consistency: Eventual Consistency 

 

 

 

 

 

 

• Special form of weak consistency 

 

• Allows for „disconnected operation“ 

 

• Requires some conflict resolution 
mechanism 

– After conflict resolution all clients see the 
same order of operations  up to a certain 
point in time („agreed past“). 

– Conflict resolution can occur on the server-
side or on the client-side 

 

Definition 

Eventual Consistency 
 
If no new updates are made to the data object, eventually all accesses 
will return the last updated value. 



3/18 

Weak Consistency: More Concepts 

Definition 

Monotonic Read Consistency 
 
If a process has seen a particular value for the object, any subsequent 
accesses will never return any previous values. 

Definition 

Monotonic Write Consistency 
 
A write operation by a process on a data item u is completed before any 
successive write operation on u by the same process (i.e. system 
guarantees to serialize writes by the same process). 

Definition 

Read-your-Writes Consistency 
 
After a process has updated a data item, it will never see an older value 
on subsequent accesses. 



3/19 

Weak Consistency: Causal Consistency 

Definition 

A system provides causal consistency if memory operations that 
potentially are causally related are seen by every node of the system in 
the same order. Concurrent writes (i.e. ones that are not causally related) 
may be seen in different order by different nodes. 

Definition 

The following pairs of operations are causally related: 
• Two writes by the same process to any memory location. 
• A read followed by a write of the same process (even if the write 

addresses a different memory location). 
• A read that returns the value of a write from any process. 
• Two operations that are transitively related according to the above 

conditions. 



3/20 

Causal Consistency: Example 

A X Y B 

write(u:=7) 

read(u) 

7 

write(u:=9) 
write(u:=4) 

read(u) 

4 

read(u) 

9 

read(u) 

4 

read(u) 

9 

This execution is causally consistent, but 
NOT sequentially consistent 

causal 
relationships 



3/21 

Large-Scale Fault-Tolerant Systems 

 

• How do we build these highly available, fault-tolerant systems consisting 
of 1k, 10k,…, 1M nodes? 

 

• Idea: Use a completely decentralized system, with a focus on availability, 
only giving weak consistency guarantees. This general approach has been 
popular recently, and is known as, e.g. 

– Cloud Computing: Currently popular umbrella name 

– Grid Computing: Parallel computing beyond a single cluster 

– Distributed Storage: Focus on storage 

– Peer-to-Peer Computing: Focus on storage, affinity with file sharing 

– Overlay Networking: Focus on network applications 

– Self-Organization, Service-Oriented Computing, Autonomous Computing, etc. 

 

• Technically, many of these systems are similar, so we focus on one. 



3/22 

P2P: Distributed Hash Table (DHT) 

 

• Data objects are distributed among the peers 

– Each object is uniquely identified by a key 

• Each peer can perform certain operations 

– Search(key)  (returns the object associated with key) 

– Insert(key, object) 

– Delete(key) 

 

• Classic implementations of these operations 

– Search Tree (balanced, B-Tree) 

– Hashing (various forms) 

 

• “Distributed” implementations 

– Linear Hashing 

– Consistent Hashing 



3/23 

Distributed Hashing 

hash 
.10111010101110011… ≈ .73 

0 1 .101x 

 

• The hash of a file is its key 

 

 

 

 

• Each peer stores data in a certain range of the ID space [0,1) 

 

 

 

 

 

 

• Instead of storing data at the right peer, just store a forward-pointer  



3/24 

Linear Hashing 

 

• Problem: More and more objects should be stored  Need to buy new 
machines! 

• Example: From 4 to 5 machines 

0 1 

0 1 

0 1 

Move many objects (about 1/2) 

Linear Hashing: Move only a few objects to new machine (about 1/n) 



3/25 

Consistent Hashing 

 

• Linear hashing needs central dispatcher 

• Idea: Also the machines get hashed! Each machine is responsible for the 
files closest to it 

• Use multiple hash functions for reliability! 

 

0 1 



3/26 

Search & Dynamics 

 

• Problem with both linear and consistent hashing is that all the 
participants of the system must know all peers… 

– Peers must know which peer they must contact for a certain data item 

– This is again not a scalable solution… 

 

• Another problem is dynamics! 

– Peers join and leave (or fail) 

 



3/27 

P2P Dictionary = Hashing 

hash 
10111010101110011… 

0000x 0001x 

001x 

01x 

100x 101x 
11x 



3/28 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

P2P Dictionary = Search Tree 

0000x 0001x 

001x 

01x 

100x 101x 

11x 



3/29 

Storing the Search Tree 

 

• Where is the search tree stored? 

• In particular, where is the root stored? 

– What if the root crashes?! The root clearly reduces scalability & fault 
tolerance… 

– Solution: There is no root…! 

• If a peer wants to store/search, how does it know where to go? 

– Again, we don’t want that every peer has to know all others… 

– Solution: Every peer only knows a small subset of others 



3/30 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1x 

01x 

000x 
001x 

The Neighbors of Peers 001x 



3/31 

P2P Dictionary: Search 

0001x 

001x 

0000x 

01x 

1100x 

Search hash 
value 1011… 

1011x 

1010x 

0x 

111x 

1101x 

Target 
machine 



3/32 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1x 

01x 

000x 
001x 

P2P Dictionary: Search 

 

• Again, 001 searches for 100: 



3/33 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

0x 

11x 

101x 
100x 

P2P Dictionary: Search 

 

• Again, 001 searches for 100: 



3/34 

Search Analysis 

 

• We have n peers in the system 

• Assume that the “tree” is roughly balanced 

– Leaves (peers) on level log2 n ± constant 

 

• Search requires O(log n) steps 

– After kth step, the search is in a subtree on level k 

– A “step” is a UDP (or TCP) message 

– The latency depends on P2P size (world!) 

 

• How many peers does each peer have to know? 

– Each peer only needs to store the address of  log2 n ± constant peers 

– Since each peer only has to know a few peers, even if n is large, the system 
scales well! 



3/35 

Peer Join 

 

• How are new peers inserted into the system? 

 

• Step 1: Bootstrapping 

 

• In order to join a P2P system, a joiner must already know a peer already in 
the system 

• Typical solutions: 

– Ask a central authority for a list of IP addresses that have been in the P2P 
regularly; look up a listing on a web site 

– Try some of those you met last time 

– Just ping randomly (in the LAN) 



3/36 

Peer Join 

 

• Step 2: Find your place in the P2P system 

 

• Typical solution: 

– Choose a random bit string (which determines the place in the system) 

– Search* for the bit string 

– Split with the current leave responsible for the bit string 

– Search* for your neighbors 

 

 * These are standard searches 

Peer ID! 



3/37 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

Random Bit String = 100101… 

Example: Bootstrap Peer with 001 



3/38 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

Random Bit String 
= 100101… 

New Peer Searches 100101... 



3/39 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

New Peer found leaf with ID 100... 

 

• The leaf and the new peer 
split the search space! 



3/40 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

Find Neighbors 

1 0 



3/41 

Peer Join: Discussion 

 

• If tree is balanced, the time to join is  

– O(log n) to find the right place 

– O(log n)∙O(log n) = O(log2 n) to find all neighbors 

 

• It is be widely believed that since all the peers choose their position 
randomly, the tree will remain more or less balanced 

– However, theory and simulations show that this is not really true! 

A regular 
search… 



3/42 

Peer Leave 

 

• Since a peer might leave spontaneously (there is no leave message), the 
leave must be detected first 

• Naturally, this is done by the neighbors in the P2P system (all peers 
periodically ping neighbors) 

• If a peer leave is detected, the peer must be replaced. If peer had a sibling 
leaf, the sibling might just do a “reverse split”: 

 

 

 

 

 

 

 

• If a peer does not have a sibling, search recursively! 

1 0 

1 0 

1 0 



3/43 

1 0 

1 0 

1 0 

Peer Leave: Recursive Search 

 

• Find a replacement: 

1. Go down the sibling tree until you find sibling leaves 

2. Make the left sibling the new common node 

3. Move the free right sibling to the empty spot 

 

1 0 

1 0 

left right 

left 

right 



3/44 

Fault-Tolerance? 

 

• In P2P file sharing, only pointers to the data is stored 

– If the data holder itself crashes, the data item is not available anymore 

 

• What if the data holder is still in the system, but the peer that stores the 
pointer to the data holder crashes? 

– The data holder could advertise its data items periodically 

– If it cannot reach a certain peer anymore, it must search for the peer that is 
now responsible for the data item, i.e., the peer’s ID is closest to the data 
item’s key 

 

• Alternative approach: Instead of letting the data holders take care of the 
availability of their data, let the system ensure that there is always a 
pointer to the data holder! 

– Replicate the information at several peers 

– Different hashes could be used for this purpose 



3/45 

Questions of Experts… 

 

• Question: I know so many other structured peer-to-peer systems (Chord, 
Pastry, Tapestry, CAN…); they are completely different from the one you 
just showed us! 

 

• Answer: They look different, but in fact the difference comes mostly from 
the way they are presented (I give a few examples on the next slides) 



3/46 

The Four P2P Evangelists 

 

• If you read your average P2P paper, there are (almost) always four papers 
cited which “invented” efficient P2P in 2001: 

 

 

 

 

• These papers are somewhat similar, with the exception of CAN (which is 
not really efficient) 

 

• So what are the „Dead Sea scrolls of P2P”? 

Chord CAN Pastry Tapestry 



3/47 

Intermezzo: “Dead Sea Scrolls of P2P” 

 

 „Accessing Nearby Copies of Replicated Objects in a Distributed 
Environment“ *Greg Plaxton, Rajmohan Rajaraman, and Andrea Richa, 
SPAA 1997] 

 

• Basically, the paper proposes an efficient search routine (similar to the 
four famous P2P papers) 

– In particular search, insert, delete, storage costs are all logarithmic, the base 
of the logarithm is a parameter 

 

• The paper takes latency into account 

– In particular it is assumed that nodes are in a metric, and that the graph is of 
„bounded growth“ (meaning that node densities do not change abruptly) 



3/48 

Intermezzo: Genealogy of P2P 

Chord CAN Pastry Tapestry 2001 

Napster 

1997 

2002 Kademlia P-Grid Viceroy 

SkipGraph SkipNet 2003 

Plaxton et al. 

Koorde 

1998 

1999 

2000 Gnutella 

Kazaa 

Gnutella-2 

eDonkey 

BitTorrent 

Skype Steam 

WWW, POTS, etc.  

PS3 

The parents of Plaxton et al.: 
Consistent Hashing, Compact Routing, … 



3/49 

Chord 

 

• Chord is the most cited P2P system 

 

• Most discussed system in distributed systems and networking books, for 
example in Edition 4 of Tanenbaum’s Computer Networks 

 

• There are extensions on top of it, such as CFS, Ivy… 



3/50 

Chord 

 

• Every peer has log n many neighbors 

– One in distance ≈2k 

for k = 0,1, 2, …, log n -1 

0000x 
0001x 

001x 

01x 

100x 

101x 

11x 



3/51 

Example: Dynamo 

 

• Dynamo is a key-value storage system by Amazon (shopping carts) 

• Goal: Provide an “always-on” experience 

– Availability is more important than consistency 

• The system is (nothing but) a DHT 

• Trusted environment (no Byzantine processes) 

• Ring of nodes 

– Node ni is responsible for keys between ni-1 and ni  

– Nodes join and leave dynamically 

• Each entry replicated across N nodes 

• Recovery from error: 

– When? On read 

– How? Depends on application, e.g. “last write 
wins” or “merge” 

– One vector clock per entry to manage  
different versions of data 

Basically what 
we talked about 



3/52 

Skip List 

 

• How can we ensure that the search tree is balanced? 

– We don’t want to implement distributed AVL or red-black trees… 

• Skip List: 

– (Doubly) linked list with sorted items 

– An item adds additional pointers on level 1 with probability ½. The items with 
additional pointers  further add pointers on level 2 with prob. ½ etc. 

– There are log2 n levels in expectation 

• Search, insert, delete: Start with root, search for the right interval on 
highest level, then continue with lower levels 

17 34 ∞ 60 69 78 84 7 11 32 root 

root ∞ 

0 

1 

2 

3 

root 

root 

∞ 

∞ 



3/53 

Skip List 

 

• It can easily be shown that search, insert, and delete terminate in O(log n) 
expected time, if there are n items in the skip list 

• The expected number of pointers is only twice as many as with a regular 
(doubly) linked list, thus the memory overhead is small 

• As a plus, the items are always ordered… 



3/54 

P2P Architectures 

 

• Use the skip list as a P2P architecture 

– Again each peer gets a random value between 0 and 1 and is responsible for 
storing that interval  

– Instead of a root and a sentinel node (“∞”), the list is short-wired as a ring 

 

• Use the Butterfly or DeBruijn graph as a P2P architecture 

– Advantage: The node degree of these graphs is constant  Only a constant 
number of neighbors per peer 

– A search still only takes O(log n) hops 

 



3/55 

Dynamics Reloaded 

 

• Churn: Permanent joins and leaves 

– Why permanent? 

– Saroiu et al.: „A Measurement Study of P2P File Sharing Systems“:  
Peers join system for one hour on average 

– Hundreds of changes per second with millions of peers in the system! 

 

• How can we maintain desirable 
properties such as 

– connectivity 

– small network diameter 

– low peer degree? 



3/56 

A First Approach 

 

• A fault-tolerant hypercube? 

 

• What if the number of peers is not 2i? 

• How can we prevent degeneration? 

• Where is the data stored? 

 

 

• Idea: Simulate the hypercube! 



3/57 

Simulated Hypercube 

 

• Simulation: Each node consists of several peers 

 

• Basic components: 

• Peer distribution 

– Distribute peers evenly 
among all hypercube nodes 

– A token distribution problem 

• Information aggregation 

– Estimate the total number of 
peers 

– Adapt the dimension of 
the simulated hypercube 



3/58 

Peer Distribution 

 

• Algorithm: Cycle over dimensions 
and balance! 

• Perfectly balanced after d rounds 

 

 

 

 

• Problem 1: Peers are not fractional! 

• Problem 2: Peers may join/leave 
during those d rounds! 

• “Solution”: Round numbers and 
ignore changes during the d rounds 

Dimension of 
hypercube 



3/59 

Information Aggregation 

 

• Goal: Provide the same (good!) estimation of the total number of peers 
currently in the system to all nodes 

• Algorithm: Count peers in every sub-cube by exchanging messages wih 
the corresponding neighbor! 

• Correct number after d rounds 

 

• Problem: Peers may join/leave 
during those d rounds! 

• Solution: Pipe-lined execution 

 

 

• It can be shown that all nodes get the same estimate 

• Moreover, this number represents the correct state d rounds ago! 

 



3/60 

Composing the Components 

 

• The system permanently runs 

– the peer distribution algorithm to balance the nodes 

– the information aggregation algorithm to estimate the total number of peers 
and change the dimension accordingly 

 

• How are the peers connected inside a simulated node, and how are the 
edges of the hypercube represented? 

 

• Where is the data of the DHT stored? 



3/61 

Distributed Hash Table 

 

• Hash function determines node where data is replicated 

• Problem: A peer that has to move to another node must store different 
data items 

• Idea: Divide peers of a node into 
core and periphery  

– Core peers store data 

– Peripheral peers are used for 
peer distribution 

 

• Peers inside a node are 
completely connected 

• Peers are connected to all 
core peers of all neighboring 
nodes 



3/62 

Evaluation 

 

• The system can tolerate O(log n) joins and leaves each round 

 

• The system is never fully repaired, but always fully functional! 

 

• In particular, even if there are O(log n) joins/leaves per round we always 
have 

– at least one peer per node 

– at most O(log n) peers per node 

– a network diameter of O(log n) 

– a peer degree of O(log n) 

 

Number of 
neighbors/connections 



3/63 

Byzantine Failures 

 

• If  Byzantine nodes control more and more corrupted nodes and then 
crash all of them at the same time (“sleepers”), we stand no chance. 

 

• Idea: Assume that the Byzantine peers 
are the minority. If IDs are chosen 
uniformly at random, the number of 
peers in any fraction of the ID space 
can be bounded with high probability. 
If there are many Byzantine peers in 
the same region, they can be detected 
(because of their unusual high 
density). This unsafe fraction is ignored. 



3/64 

Bitcoin 

• Bitcoin is a decentralized peer-to-peer currency 

– Network of untrusted nodes clears transactions and tracks balances 

– Own currency: “Bitcoins” 

– Can be traded for traditional currencies (EUR, USD, CHF) 

 

• Bitcoin is 

– Global 

– Fast 

– Irreversible 

– Without intermediaries 

– Anonymous/Pseudonymous 

 

• Public record of all transactions (blockchain) 

– Only includes valid transactions 

– Eventually consistent 

 



3/65 

Where do I sign up? 

• Private Key 

– A user locally generates a random private key. 

– Used to prove ownership of Bitcoins. 

 

• Public Key 

– The public key is derived from the private key, using ECDSA  
(elliptic curve digital signing algorithm). 

– Used to verify ownership of Bitcoins. 

 

• Address 

– Derived from a hash of the public key, by adding a version  
number and a checksum and encoding it in base58. 

– Users can have an arbitrary number of addresses. 

– The address is then either published (donations) or  
sent along with an invoice (payments). 

– Users are encouraged to create a new key triplet for each  
incoming payment. 



3/66 

Transactions 

 

• Bitcoin implements a replicated 
transaction history 

– A transaction transfers ownership of some 
coins from one or more sending addresses 
to one or more receiving addresses. 

– Bitcoins only exist as part of transactions. 

– The current balance of an address is simply 
the sum of all bitcoins associated with that 
address, and have not been spent yet. 

 



3/67 

Transactions continued 

• Bitcoin tracks tuples (called outputs) of bitcoins and an owner address 

(value, address) 

 

• A transaction claims some outputs by including inputs and a valid 
signature for the owner address. 

 

• Inputs are references to the transaction that created the claimed output 

(transaction hash, index) 

 

 

 
2,A 

2,B 

Sig(A) 

Value 
4 BTC 

3,C 

1,A 

  𝑖1 

Sig(B)   𝑖2 

Inputs Outputs 



3/68 

The Bitcoin Network 

 

• Bitcoin is a network of nodes, controlled by 
a multitude of users 

 

• The nodes connect to randomly selected 
nodes in the network 

 

• Each node holds a full replica of the 
transaction history (blockchain) and the 
unspent transaction output set  

 

• Each node verifies each transaction and 
applies it to its replica if valid 

 



3/69 

Tracing a Transaction in the Network 

• Transactions enter the Bitcoin 
network at any node 

• Nodes forward transactions to 
their neighbors in the network 

• A node receiving a transaction 
attempts to apply it to its local 
replica: 

– Verify signatures 

– Mark the transaction inputs as 
claimed 

– Create new outputs 

What if they 
are already 
claimed? 

TX 



3/70 

What could possibly go wrong? 

• Transactions can conflict, if they 
attempt to claim the same output  

– “Double spending” attack 

– Only one of the transactions can be 
valid at a time 

– Which one to choose? 

 

• We simply decide locally and 
tentatively apply the first transaction 
we received 

– But then we are inconsistent 

– How do we re-establish consistency? 

TX 

TX’ 



3/71 

Blocks 

• Basic idea: Use a leader 

• Elect a new leader at regular intervals 

• Leader confirms a set of transactions* 
that have not been confirmed so far by 
previous leaders. 

• The leader broadcasts a block. 

• Along the set of transactions the block 
contains a nonce (a number) and a 
reference to the previous block. 

• But who should be the leader? Let the 
nodes try to solve some hard problem, 
the first to solve it is the leader (Proof-
of-Work). 

 

• *Leaders choose their own transactions, 
and transactions where the output 
values is smaller than the input values. 

 

I am 
leader 



3/72 

Proof-of-Work 

• Bitcoin’s leader election is based on finding a Proof-of-Work 

• A Proof-of-Work system is characterized by: 

– A non-reversible work function 𝐹(𝑥), where 𝑥 is the block 

– A validity predicate 𝑃(𝑦) 

 

Find 𝑥 so that 𝑃 𝐹 𝑥 =  𝑇𝑟𝑢𝑒 

 

• In Bitcoin 

F x =  𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝑥))  

𝑃 𝑦 ↔  first 𝑏 bits of 𝑦 are 0 

 

• 𝑏 is a “global variable” so that a solution is found about once every 10 
minutes in expectation (in the whole network). The variable 𝑏 is adjusted 
(-4,…,+4) after 2016 leaders have been elected. Currently b ≈ 60. 

• Nodes attempting to find a Proof-of-Work  are called miners. 



3/73 

Blockchain 

 

• How to avoid that a leader reverts the decisions of a previous leader? 

– Blocks are chained together (using the reference to the last block). 

– Every transaction confirmed in a block is also confirmed in its successors. 

– If a later block contradicts with a predecessor it is invalid. 

– Blocks therefore incrementally build a consistent transaction history. 

 

 



3/74 

Blockchain Forks 

 

• Are we really any better off than simply using transactions? 

– What happens if multiple blocks are created as a successor to a block? 

– Can’t an attacker simply go back and start its own chain? 

• Solution: Extend the longest chain 

– Eventually there will be only one longest chain, and all nodes will agree. 

– An attacker would have to compete with the rest of the network to create a 
new longest chain. 



3/75 

Do Blockchain Forks happen? 

• Slow propagation of blocks in the 
network causes Blockchain forks 

 

• Time to propagate a block is 
proportional to the block’s size 

 

• Currently 

– Blocks limited to 1MB in size 

– Time to propagate a block to 50% of 
the network ~6 seconds 

– Long tail: 95th percentile at 40 seconds 

– In 10,000 blocks we have 163 forks, 
which is about 1.6% 

 



3/76 

Mining 

• Blocks are currently worth ~25’000 USD 

– Miners are involved in an arms race, fighting 
over the block reward. 

– Companies are building ever more powerful 
and sophisticated mining equipment. 

– CPUs were replaced by GPUs, GPUs were 
replaced by FPGAs and they too were replaced 
by ASICs 

• But mining is not useful in itself 

– It just provides the leader election and limits 
the influence of individuals 

– Is there a way to make the mining process 
useful? 

 

There are some attempts, e.g., primecoin, that 
are more useful, but none of them is searching 
for a cure for cancer yet. 



3/77 

Bitcoin Today 

 

• Equivalent of > 9 billion USD of 
bitcoins in circulation 

 

• ~10′000 active nodes in the 
network at any time 

 

• ~50′000 transactions per day 

 

• ~42 × 1018 FLOPS total 
computational power in the 
network 

 

• Mining with CPU (or even GPU) is 
not cost efficient 



3/78 

Ongoing Research in Bitcoin 

• Pseudonymity / Anonymity 

– The ledger is open for everyone to inspect 

– Isn’t this a privacy issue? 

• Scalability 

– As more and more people start using Bitcoin the number of transactions 
grows quickly 

– The current protocol does not scale 

• Confirmation speed 

– For a transaction to be confirmed it has to be included in a block 

– A block is found every 10 minutes in expectation 

• New Use-cases 

– Smart Property 

– Micropayments 

– Escrow transactions 

– … 



3/79 

History 

 

• Bitcoin was published by Satoshi Nakamoto in 2008 

 

• Satoshi remains to date anonymous, we don’t even know whether it’s an 
individual or a group of people. 

 

• By early 2009 the prototype was up and running. 

 

• Satoshi disappeared in 2010, after transferring control to open-source 
developers, saying that he had “moved on to other things”. 

 

• Satoshi did not pre-mine any blocks, the genesis block (0th block) contains 
a quote from The Times of the 3rd january 2009. 

 



3/80 

Credits 

 

• Concurrent hashing and random trees have been proposed by Karger, 
Lehman, Leighton, Levine, Lewin, and Panigrahy, 1997. 

• Chord is from Stoica et al. 2001. 

• The churn-resistent P2P System is due to Kuhn et al., 2005. 

• Dynamo is from DeCandia et al., 2007. 

• Byzantine faults in DHTs is from Awerbuch and Scheideler, 2004. 

• Bitcoin is due to Nakamoto (likely a pseudonym), 2008. 

• Bitcoin Propagation analysis by Decker and Wattenhofer, 2013 



3/81 ETH Zurich – Distributed Computing – www.disco.ethz.ch 

Roger Wattenhofer 

That’s all, folks! 
Questions & Comments? 


