Clock Synchronization
Part 2, Chapter 5

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

Overview

* Motivation

* Real World Clock Sources, Hardware and Applications
* Clock Synchronization in Distributed Systems

* Theory of Clock Synchronization

* Protocol: PulseSync

Y[]u TubE Clock Synchronization

Motivation

* Logical Time (“happened-before”)
* Determine the order of events in a distributed system
* Synchronize resources

* Physical Time
* Timestamp events (email, sensor data, file access times etc.)
* Synchronize audio and video streams
* Measure signal propagation delays (Localization)
* Wireless (TDMA, duty cycling)
* Digital control systems (ESP, airplane autopilot etc.)

Properties of Clock Synchronization Algorithms

* External vs. internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time
— toaleader, to an averaged time, ...

* One-shot vs. continuous synchronization
— Periodic synchronization required to compensate clock drift

¢ Online vs. offline time information
— Offline: Can reconstruct time of an event when needed

* Global vs. local synchronization (explained later)

* Accuracy vs. convergence time, Byzantine nodes, ...

Atomic Clocks vs. Length of a Day

5ms 255
4ms ‘ 20s
i
i !
+3ms I‘ F | H‘ +15s
il w’ :y
"

“2m ﬂ

ome ‘ 11n‘ | 'IFiOS
Daily deviation of day length from S| based day (86400's) y
\

Moving 365-day average of deviation
Cumulative deviation since introduction of leap seconds
UTC leap secon d

1965 1970 1975 1980 1985 1980 1995 2000 2005 2010

World Time (UTC)

e Atomic Clock

UTC: Coordinated Universal Time

Sl definition 1s := 9192631770 oscillation cycles of the caesium-133 atom
Clocks excite these atoms to oscillate and count the cycles

Almost no drift (about 1s in 10 Million years)

Getting smaller and more energy efficient!

5/6

Access to UTC

e Radio Clock Signal r
— Clock signal from a reference source

(atomic clock) is transmitted over a t
long wave radio signal

DCF77 station near Frankfurt,
Germany transmits at 77.5 kHz with a
transmission range of up to 2000 km

Accuracy limited by the propagation
delay of the signal, Frankfurt-Zurich is
about 1ms

Special antenna/receiver hardware
required

5/8

What is UTC, really?

¢ International Atomic Time (TAl)
About 200 atomic clocks
About 50 national laboratories

Reduce clock skew by comparing and averaging
UTC = TAIl + UTC leap seconds (irregular rotation of earth)

e GPS
— USNO Time

— USNO vs. TAIl difference
is a few nanoseconds

Global Positioning System (GPS)

¢ Satellites continuously transmit own position and time code
¢ Line of sight between satellite and receiver required

e Special antenna/receiver hardware required

¢ Time of flight of GPS signals varies between 64 and 89ms

¢ Positioning in space and time!

¢ What is more accurate,
GPS or Radio Clock Signal?

Comparing (and Averaging)

‘s

Station A Station B

tAA = tA —_ (tSV+dA) tAB = tB - (tSV+dB)

ta=tap —taa=tp— (tsy +dp) —tg+ (tsy +dy) =tg —ty+dy —dp

GPS Localization

Assuming that time of
GPS satellites is correctly
synchronized...

ti2

b1 ty tp t3 tsy

™ r 3 T4

GPS Localization

5 sz s

S1—P||_t ¢

- -4
S
z_ p||—t+t12 Sa
S
5= p||—t+t13

p||=t+t1n—tn

¢ = speed of light

Find least squares solution in t and p

Alternative (Silly) Clock Sources

AC power lines
— Use the magnetic field radiating from electric AC power lines

— AC power line oscillations are extremely stable
(drift about 10 ppm, ppm = parts per million)

— Power efficient, consumes only 58 uW

— Single communication round required to correct
phase offset after initialization

Sunlight
— Using a light sensor to measure the length of a day

— Offline algorithm for reconstructing global '
timestamps by correlating annual solar patterns wl SN e
(no communication required)]

T T T T
Jan2006 2008 Jan2007 Jul2007 Jen 2008

Keeping GPS Satellites synchronized

75°

60° 80° 120° 150 180°

B oot I S — l75°

180° 150° 120° 90°

M MASTER CONTROL STATION

60° 30° [

@ MONITOR STATION

Clock Devices in Computers

* Real Time Clock (IBM PC)

Battery backed up

32.768 kHz oscillator + Counter
Get value via interrupt system

e HPET (High Precision Event Timer)

Oscillator: 10 Mhz ...
Up to 10 ns resolution!
Schedule threads
Smooth media playback

100 Mhz

Usually inside Southbridge

30°

60° 90° 120° 150° 180°

A GROUND ANTENNA
* pPrelaunch Capability Station
(Functional Ground Antenna)

Clock Drift

Clock drift: random deviation from the nominal rate dependent on power supply,
temperature, etc.

rate

A

BT N ——
\ ~ ot

[uny

1-€

>

E.g. TinyNodes have a maximum drift of 30-50 ppm (parts per million)

921816

921814
ﬂ\’%&

921812 s,

5
s
921810 \

921808

This is a drift of up to
50us per second
or 0.18s per hour

Frequency (Hz)

15 -10 5 0 5 10 15 20 25 30 35
Temperature (°C)

Propagation Delay Estimation (NTP)

Measuring the Round-Trip Time (RTT)

t Time accor- t
2 dingto B 3

B
Request Answer
from A from B

A
ty

Time accor-

—
tl dingto A

Propagation delay § and clock skew © can be calculated

(ty — t1) — (t3 — tp)

5=
2

(tz — (&1 + 8)) — (tg — (t3 + 6)) _ (tz — t1) + (t3 — t4)

0=
2 2

Clock Synchronization in Computer Networks

* Network Time Protocol (NTP)

* Clock sync via Internet/Network (UDP)
* Publicly available NTP Servers (UTC)

* You can also run your own server!

* Packet delay is estimated to reduce clock skew

Messages Experience Jitter in the Delay

= Problem: Jitter in the message delay
Various sources of errors (deterministic and non-deterministic)

0-100 ms 0-500 ms 1-10 ms
{\«\e@‘ SendCmd | Access | Transmission |

g ‘;3,&3‘“9

| — | oo | ?

0-100 ms
° Tt

= Solution: Timestamping packets at the MAC layer
-> Jitter in the message delay is reduced to a few clock ticks

Jitter Measurements Clock Synchronization in Computer Networks (PTP)

e Different radio chips use different paradigms * Precision Time Protocol (PTP) is very similar to NTP
— Leftis a CC1000 radio chip which generates an interrupt with each byte.

— Right is a CC2420 radio chip that generates a single interrupt for the packet .

Commodity network adapters/routers/switches can assist in time sync by
after the start frame delimiter is received.

timestamping PTP packets at the MAC layer

R ! b t [* Packet delay is only estimated on request
e In wireless networks propagation o * Synchronization through one packet from server to clients!
can be ignored (<1us for 300m). o
10000 * Some newer hardware (1G Intel cards, 82580) can timestamp any packet

e Still there is quite some variance - at the MAC layer

in transmission delay because of
latencies in interrupt handling . * Achieving skew of about 1 microsecond
(picture right).

1

Hardware Clock Distribution Clock Synchronization Tricks in Wireless Networks

* Synchronous digital circuits require all components to act in sync
* Reference Broadcast Synchronization (RBS) <>
Synchronizing atomic clocks

. 20 % 20 * Sender synchronizes set of clocks
10 20 ’:’J
-

L

®12 20
. J 2 * Time-sync Protocol for Sensor Networks (TPSN) <> ty "
1s 20 Network Time Protocol 3
* Estimating round trip time to sync more accurately t1 ¢
4
* The bigger the clock skew, the longer the clock period
* The clock signal that governs this rhythm needs to be distributed to all * Flooding Time Synchronization Protocol
components such that skew and wire length is minimized (FTSP)&->Precision Time Protocol Q
+ Optimize routing, insert buffers (also to improve signal) * Timestamp packets at the MAC Layer to improve 0\9\0
accuracy /
@

Best tree for tree-based clock synchronization? Clock Synchronization Tricks (GTSP)

Finding a good tree for clock synchronization is a tough problem = Synchronize with all neighboring

— Spanning tree with small (maximum or average) stretch. nodes

* Broadcast periodic time beacons,

e Example: Grid network, with n = m? nodes. e.g. every30s 0
* No reference node necessary

= How to synchronize clocks without [
having a leader? 0/
* Follow the node with the
fastest/slowest clock? / \

¢ No matter what tree you use, the maximum
stretch of the spanning tree will always be
at least m (just try on the grid).

¢ In general, finding the minimum max « Idea: Go to the average clock e
stretch spanning tree is a hard problem, value/rate of all neighbors (including
however approximation algorithms exist. node itself)
Variants of Clock Synchronization Algorithms FTSP vs. GTSP: Global Skew
Tree-like Algorithms Distributed Algorithms e Network synchronization error (global skew)
e.g. FTSP e.g. GTSP — Pair-wise synchronization error between any two nodes in the network
root
/@\ FTSP (avg: 7.7 us) GTSP (avg: 14.0 pus)

3

8

Network Synchronization Error (us)
Network Synchronization Error (us)

304 @B

Bad local
skew

B

. 1] 5000 10000 15000 20000 1] 5000 10000 15000 20000
All nodes consistently average The (@ The (@

errors to all neigbhors

Neighbor Synchronization Error (us)

FTSP vs. GTSP: Local Skew

e Neighbor Synchronization error (local skew)
— Pair-wise synchronization error between neighboring nodes

¢ Synchronization error between two direct neighbors:

FTSP (avg: 15.0 ps) GTSP (avg: 2.8 us)

100 100

80 80

4

¥

’V H ‘1
|‘\h|l Hﬂw" \|’ M \ “‘ H \M \

i ;
. : |
o 5000 10000 15000 20000
Time (s) Time (s)

8

&
Neighbor Synchronization Error (us)

8

Theory of Clock Synchronization

. Given a communication network

1. Each node equipped with hardware clock with drift
2. Message delays with jitter

worst-case (but constant)

e Goal: Synchronize Clocks (“Logical Clocks”)
. Both global and local synchronization!

Global vs. Local Time Synchronization

e Common time is essential for many applications:

G\oba\ — Assigning a timestamp to a globally sensed event (e.g. earthquake)
Locd — Precise event localization (e.g. shooter detection, multiplayer games)
Locd _ TDMA-based MAC layer in wireless networks

wocd _ Coordination of wake-up and sleeping times (energy efficiency)

Time Must Behave!

* Time (logical clocks) should not be allowed to stand still or jump

. Let’s be more careful (and ambitious):

. Logical clocks should always move forward
* Sometimes faster, sometimes slower is OK.
* But there should be a minimum and a maximum speed.
* Asclose to correct time as possible!

Formal Model

* Hardware clock H,(t) = [io 4 h,(7) dT
with clock rate h (t) € [1-€,1+¢€]

Clock drift € is typically small, e.g.
€ ~10* for a cheap quartz oscillator

Logical clocks with rate less than 1

* Logical clock L (-) which increases ; :
behave differently (“synchronizer”)

at rate at least 1 and at most 3

Neglect fixed share of delay,

* Message delays € [0,1] normalize jitter

* Employ a synchronization algorithm
to update the logical clock according H Time is 152
to hardware clock and
messages from
neighbors

Synchronization Algorithms: Amax’

e The problem of A™ is that the clock is always increased to the maximum

value

* Idea: Allow a constant slack y between the maximum neighbor clock value

and the own clock value

+ The algorithm A”®’ sets the local clock value Lj(t) to
Ly = max(L;(t), manENiLj(t) =)

- Worst-case clock skew between two neighboring nodes is still ©(D)
independent of the choice of y!

* How can we do better?
— Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?

— Idea: Take the clock of all neighbors into account by choosing the average
value?

Synchronization Algorithms: An Example (“Am3”)

e Question: How to update the logical clock
based on the messages from the neighbors?

Allow (= 00

¢ |dea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if larger than local clock value)

— forward new values immediately

e Optimum global skew of about D

e Poor local property
— First all messages take 1 time unit...
— ..then we have a fast message!

New time is D+x

Fastest New time is D+x skew D!
Hardware
Clock Time is D+x Time is D+x Time is D+x —A—
&E—8— - -5 O
Clock value: Old clock value: Old clock value: Old clock value:
D+x D+x-1 x+1 X

Local Skew: Overview of Results

Everybody‘s expectation,
five years ago (,,solved”)
Blocking = All natural algorithms

e I T Al e algorithm [Locher et al., DISC 2006]

[Fan & Lynch, PODC 2004]

0 o—

Dynamic Networks!
[Kuhn et al., SPAA 2009]

| 1 logD

Kappa algorithm
[Lenzen et al., FOCS 2008]

Tight lower bound
[Lenzen et al., PODC 2009]

Enforcing Clock Skew

\
\
/
/

v

e Messages between two neighboring nodes may be fast in one direction
and slow in the other, or vice versa.

¢ A constant skew between neighbors may be ,hidden”.

¢ In a path, the global skew may be in the order of D/2.

Local Skew: Upper Bound

* Surprisingly, up to small constants, the Q(log; ;D) lower bound can be
matched with clock rates € [1,5] (tough part, not included)

e We get the following picture [Lenzen et al., PODC 2009]:

max rate 3 1+€ 1+6(e) 1+Ve 2

local skew O(log D) | O(logy, D) | O(logy, D) | O(logy, D)

v

We can have both
smooth and accurate
clocks!

... because too large
clock rates will amplify
the clock drift e.

¢ In practice, we usually have 1/e = 10* > D. In other words, our initial
intuition of a constant local skew was not entirely wrong! ©

Local Skew: Lower Bound

hy =1 Ly (t)=x

h,=1+¢€

L,(®) = x + 1/,

N\ o~

A

" Higher

/ : |
N\ -
/ .

hy, =1 C Ly(®

~

hy =1

"Ly ()

e Add l°/2 skew in 10/25 time, messing with clock rates and messages

* Afterwards: Continue execution for 10/4“;_1) time (all b, = 1)

> Skew reduces by at most '/, > at least '°/, skew remains

-> Consider a subpath of length [; = [, - “/2(p—1) With at least 11/4 skew

> Add 1/, skewin 1/, = 10/4(3_1) time = at least 3/, - [; skew in subpath

* Repeat this trick (+,-%,+%,-%,...) 10g2(3-1)/ D times

Theorem: Q(logg_l/ D) skew between neighbors

Back to Practice: Synchronizing Nodes

= Sending periodic beacon messages to synchronize nodes

Beacon interval B
L

[1
100

2100 |
jitter jitter

t @ reference clock

‘@

How accurately can we synchronize two nodes?

= Message delay jitter affects clock synchronization quality

y(x) = X+ Ay

T— clock offset

relative clock rate
(estimated)

Beacon interval B

Multi-hop Clock Synchronization

= Nodes forward their current estimate of the reference clock
Each synchronization beacon is affected by a random jitter J

1 1, I 1, Js 1

= Sum of the jitter grows with the square-root of the distance
stddev(J; +J, +J3+J,+Js +... J;) = Vdxstddev(J)

Single-hop: Multi-hop:

. J R Jvd
g —y 7 = |j-y 7

Clock Skew between two Nodes

= Lower Bound on the clock skew between two neighbors

Error in the rate estimation:
— lJitter in the message delay
— Beacon interval

— Number of beacons k

|~
r—ri~—
BkVk
Synchronization error:
J

3)—19|N7E

Beacon interval B

Linear Regression (e.g. FTSP)

= FTSP uses linear regression to compensate for clock drift
Jitter is amplified before it is sent to the next hop

y(x) = Fx + Ay

T— clock offset

relative clock rate
(estimated)

Beacon interval B

The PulseSync Protocol The PulseSync Protocol (2)

¢ Send fast synchronization pulses through the network e Remove self-amplification of synchronization error
— Speed-up the initialization phase — Fast flooding cannot completely eliminate amplification

— Faster adaptation to changes in temperature or network topology

Beacon time B

)
® |
@ ~ synchronisationerror
FTSP @ [
Expected time ® - A\
=D-B/2) l . y(x) =X+ Ay
Beacon time B l
[) clock offset
@ - - relative clock rate
@ (estimated)
PulseSync g |
Expected time ® -
= D'tpulse @ - t .
touise Beacon interval B
FTSP vs. PulseSync FTSP vs. PulseSync
¢ Global Clock Skew
* Maximum synchronization error between any two nodes e Sychnronization Error vs. distance from root node
300 300 100
E Average Global Skew —+— Average Global Skew ——
: FTSP Max\mu:mcmbal Skew —s— B Pulsesync Maximum Global Skew —s<— FTSP Pulsesync
H] Tn\ 80 41
& . 200 E’
H H S
z z 150) 60 1
] 3 c 4
o o 100 9
g
S 40+t
e
o
[&]
0 5000 10000 15000 20000 c
Time (s) Time (s) (B‘ 20 T
Lot OO s s
Average (t>2000s) 23.96 us 4.44 ps 5 10 15 5 10 15

Maximum (t>2000s) 249 ps 38 us Distance (Hops) Distance (Hops)

Credits

‘s all
That’s all!
e Approximation algorithms for minimum max stretch spanning tree, e.g.

Emek and Peleg, 2004. Questions & Comments?
e More credits to come

' a
‘@D’%&)’ -

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

