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Overview

* Motivation

 Real World Clock Sources, Hardware and Applications
* Clock Synchronization in Distributed Systems

* Theory of Clock Synchronization

* Protocol: PulseSync



Motivation

* Logical Time (“happened-before”)

 Determine the order of events in a distributed system

e Synchronize resources

* Physical Time
 Timestamp events (email, sensor data, file access times etc.)
* Synchronize audio and video streams

* Measure signal propagation delays (Localization)
*  Wireless (TDMA, duty cycling)

* Digital control systems (ESP, airplane autopilot etc.)
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Properties of Clock Synchronization Algorithms

External vs. internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time

— to aleader, to an averaged time, ...

* One-shot vs. continuous synchronization

— Periodic synchronization required to compensate clock drift

* Online vs. offline time information

— Offline: Can reconstruct time of an event when needed

* Global vs. local synchronization (explained later)

* Accuracy vs. convergence time, Byzantine nodes, ...




World Time (UTC)

e Atomic Clock
— UTC: Coordinated Universal Time
— Sl definition 1s := 9192631770 oscillation cycles of the caesium-133 atom
— Clocks excite these atoms to oscillate and count the cycles
— Almost no drift (about 1s in 10 Million years)
— Getting smaller and more energy efficient!
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Atomic Clocks vs. Length of a Day
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Access to UTC

e Radio Clock Signal

g o

— Clock signal from a reference source
(atomic clock) is transmitted over a
long wave radio signal

— DCF77 station near Frankfurt,
Germany transmits at 77.5 kHz with a

transmission range of up to 2000 km fr
— Accuracy limited by the propagation (h»
(%
delay of the signal, Frankfurt-Zurich is
about 1ms s

g
.-
'-‘r"?-

— Special antenna/receiver hardware
required




What is UTC, really?

e International Atomic Time (TAl)

— About 200 atomic clocks [ II:“-'E"""“
— About 50 national laboratories Bl PM

— Reduce clock skew by comparing and averaging
— UTC =TAIl + UTC leap seconds (irregular rotation of earth)

e GPS
— USNO Time

— USNO vs. TAI difference
is a few nanoseconds




Comparing (and Averaging)
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Global Positioning System (GPS)

e Satellites continuously transmit own position and time code
e Line of sight between satellite and receiver required

e Special antenna/receiver hardware required

e Time of flight of GPS signals varies between 64 and 89ms

e Positioning in space and time!

e What is more accurate,
GPS or Radio Clock Signal?




GPS Localization

Assuming that time of
GPS satellites is correctly
synchronized...
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GPS Localization
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Keeping GPS Satellites synchronized
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Alternative (Silly) Clock Sources

e AC power lines

Use the magnetic field radiating from electric AC power lines

AC power line oscillations are extremely stable
(drift about 10 ppm, ppm = parts per million)

Power efficient, consumes only 58 uW

Single communication round required to correct
phase offset after initialization

e Sunlight

Using a light sensor to measure the length of a day
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Clock Devices in Computers

* Real Time Clock (IBM PC)

e Battery backed up
e 32.768 kHz oscillator + Counter
e Get value via interrupt system

e HPET (High Precision Event Timer)
* Oscillator: 10 Mhz ... 100 Mhz A, e .
e Upto 10 ns resolution! > oy Lo
e Schedule threads
* Smooth media playback

e Usually inside Southbridge
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Clock Drift

* Clock drift: random deviation from the nominal rate dependent on power supply,
temperature, etc.

rate

1+€ .............................................................................................................
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>

* E.g. TinyNodes have a maximum drift of 30-50 ppm (parts per million)

921816 - '
This is a drift of up to
50us per second
921814 | or 0.18s per hour
T
L
z
é 921812 |
g
(T
921810
921808 L 1 1 'l 1 1 1 1 1
45 0 -5 0 5 10 15 20 25 30 35

Temperature (°C)



Clock Synchronization in Computer Networks

 Network Time Protocol (NTP)

* Clock sync via Internet/Network (UDP)
e Publicly available NTP Servers (UTC)

* You can also run your own server!

* Packet delay is estimated to reduce clock skew



Propagation Delay Estimation (NTP)

* Measuring the Round-Trip Time (RTT)

t Time accor- t
8 2 ding to B 3

Request Answer
from A fromB
A

o Time accor-
tl dingto A t4’

* Propagation delay 6 and clock skew © can be calculated

(ty —t1) — (t3 — t3)
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Messages Experience lJitter in the Delay

= Problem: Jitter in the message delay
Various sources of errors (deterministic and non-deterministic)

A 0-100 ms 0-500 ms 1-10 ms
,{\«\e@ SendCmd Access Transmission

Reception Callback
0-100 ms

=  Solution: Timestamping packets at the MAC layer
— litter in the message delay is reduced to a few clock ticks



Jitter Measurements

e Different radio chips use different paradigms
— Leftis a CC1000 radio chip which generates an interrupt with each byte.

— Rightis a CC2420 radio chip that generates a single interrupt for the packet
after the start frame delimiter is received.

|
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e In wireless networks propagation
can be ignored (<1us for 300m).
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e Still there is quite some variance
in transmission delay because of 100
latencies in interrupt handling
(picture right).

Measurements
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Clock Synchronization in Computer Networks (PTP)

Precision Time Protocol (PTP) is very similar to NTP

 Commodity network adapters/routers/switches can assist in time sync by
timestamping PTP packets at the MAC layer

* Packet delay is only estimated on request

e Synchronization through one packet from server to clients!

 Some newer hardware (1G Intel cards, 82580) can timestamp any packet
at the MAC layer

* Achieving skew of about 1 microsecond



Hardware Clock Distribution

* Synchronous digital circuits require all components to act in sync

20 20
15 204
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* The bigger the clock skew, the longer the clock period

* The clock signal that governs this rhythm needs to be distributed to all
components such that skew and wire length is minimized

e Optimize routing, insert buffers (also to improve signal)



Clock Synchronization Tricks in Wireless Networks

» Reference Broadcast Synchronization (RBS) <=2
Synchronizing atomic clocks

* Sender synchronizes set of clocks

* Time-sync Protocol for Sensor Networks (TPSN) €<= try
Network Time Protocol

e Estimating round trip time to sync more accurately tq

(FTSP)<—>Precision Time Protocol
* Timestamp packets at the MAC Layer to improve )

accuracy / \
@

* Flooding Time Synchronization Protocol T\



Best tree for tree-based clock synchronization?

e Finding a good tree for clock synchronization is a tough problem

— Spanning tree with small (maximum or average) stretch.

e Example: Grid network, with n = m? nodes.

e No matter what tree you use, the maximum
stretch of the spanning tree will always be
at least m (just try on the grid).

e In general, finding the minimum max
stretch spanning tree is a hard problem,
however approximation algorithms exist.
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Clock Synchronization Tricks (GTSP)

=  Synchronize with all neighboring
nodes

* Broadcast periodic time beacons,
e.g.,every 30s

* No reference node necessary

= How to synchronize clocks without
having a leader?

 Follow the node with the
fastest/slowest clock?

* Idea: Go to the average clock
value/rate of all neighbors (including
node itself)




Variants of Clock Synchronization Algorithms

Tree-like Algorithms
e.g. FTSP

root

Bad local
skew

Distributed Algorithms
e.g. GTSP

All nodes consistently average
errors to all neigbhors



Network Synchronization Error (us)

FTSP vs. GTSP: Global Skew

e Network synchronization error (global skew)
— Pair-wise synchronization error between any two nodes in the network

FTSP (avg: 7.7 us)
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Neighbor Synchronization Error (us)

FTSP vs. GTSP: Local Skew

e Neighbor Synchronization error (local skew)
— Pair-wise synchronization error between neighboring nodes

e Synchronization error between two direct neighbors:

FTSP (avg: 15.0 pus) GTSP (avg: 2.8 ps)
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Global vs. Local Time Synchronization

e Common time is essential for many applications:

6\0‘03\ — Assigning a timestamp to a globally sensed event (e.g. earthquake)
Locd  — Precise event localization (e.g. shooter detection, multiplayer games)
\_Oca\ — TDMA-based MAC layer in wireless networks

Locdl  _ Coordination of wake-up and sleeping times (energy efficiency)

[ ] B




Theory of Clock Synchronization

 Given a communication network
1. Each node equipped with hardware clock with drift
2. Message delays with jitter

worst-case (but constant)

Goal: Synchronize Clocks (“Logical Clocks”)
. Both global and local synchronization!



Time Must Behave!

 Time (logical clocks) should not be allowed to stand still or jump

. Let’s be more careful (and ambitious):

. Logical clocks should always move forward
 Sometimes faster, sometimes slower is OK.
e But there should be a minimum and a maximum speed.

* Asclose to correct time as possible!



Formal Model

 Hardware clock H,(t) = [;o 1 h,(7) dT
with clock rate h (t) € [1-€,1+¢€]

* Logical clock L () which increases
at rate at least 1 and at most 3

* Message delays € [0,1]

 Employ a synchronization algorithm
to update the logical clock according
to hardware clock and
messages from
neighbors

Time is 140

<
/ .
X

=)

Clock drift € is typically small, e.g.
€ ~10* for a cheap quartz oscillator

Logical clocks with rate less than 1
behave differently (“synchronizer”)

Neglect fixed share of delay,
normalize jitter

Time is 152
Hv

N —

Time is 150

L? \

=)
¢ P



Synchronization Algorithms: An Example (“Amax”)

e (Question: How to update the logical clock Allow 3 = 0o
based on the messages from the neighbors?
e |dea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if larger than local clock value)

— forward new values immediately
e Optimum global skew of about D
e Poor local property
— First all messages take 1 time unit...

— ...then we have a fast message!

e New time is D+x New time is D+x skew DI
Hardware

Clock Time is D+x Time is D+x Time is D+x f_H
&) &) - Q) &,

Clock value: Old clock value: Old clock value: Old clock value:
D+x D+x-1 x+1 X

v



Synchronization Algorithms: Amax’

e The problem of A™* is that the clock is always increased to the maximum
value

* Idea: Allow a constant slack y between the maximum neighbor clock value
and the own clock value

« The algorithm A”% sets the local clock value L t) to
Lty = max(L;(t), maxjey,L;i(t) — )

—> Worst-case clock skew between two neighboring nodes is still (D)
independent of the choice of y!

e How can we do better?

— Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?

— ldea: Take the clock of all neighbors into account by choosing the average
value?



Local Skew: Overview of Results

Everybody‘s expectation,
five years ago (,,solved”)

Blocking
algorithm

Dynamic Networks!

[Lenzen et al., FOCS 2008]
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Enforcing Clock Skew

e Messages between two neighboring nodes may be fast in one direction
and slow in the other, or vice versa.

e A constant skew between neighbors may be ,hidden”.

* |n a path, the global skew may be in the order of D/2.



Local Skew: Lower Bound

h, =1 L, (£)=x hy=1+¢ Lyt =x+"/,

L]
L) .' A
L] L]
° L]
° i A o
L]
L]

/ .
lo =D — -

h, =1 Ly (1) h, =1 L, (%)

- Higher

e Add 10/2 skew in 10/26 time, messing with clock rates and messages
 Afterwards: Continue execution for 10/4(ﬁ_1> time (all h, = 1)

—> Skew reduces by at most l°/4 - at least l°/4 skew remains

—> Consider a subpath of length [; = [ - “/2(p—1) With at least 11/4 skew

- Add 11/2 skew in 11/26 = 10/4(3_1) time - at least 3/, - [; skew in subpath
e Repeat this trick (+)4,-%,+%,-%,...) IOgZ(B—l)/ D times

Theorem: Q(logg_l/ D) skew between neighbors



Local Skew: Upper Bound

e Surprisingly, up to small constants, the Q(Iog(ﬁ_l)/€D) lower bound can be
matched with clock rates € [1,3] (tough part, not included)

e We get the following picture [Lenzen et al., PODC 2009]:

max rate 3 1+e 1+6(¢) 1+Ve 2
local skew O(log D) | O(logy, D) | O(log,, D) | O(log,, D)
We can have both ... because too large
smooth and accurate clock rates will amplify
clocks! the clock drift e.

e |n practice, we usually have 1/¢ = 10% > D. In other words, our initial
intuition of a constant local skew was not entirely wrong! ©



Back to Practice: Synchronizing Nodes

= Sending periodic beacon messages to synchronize nodes

Beacon interval B
I

[ |
100

\

t @ reference clock

t=100 |

1] | (1]

jitter jitter

(@



How accurately can we synchronize two nodes?

= Message delay jitter affects clock synchronization quality

Beacon interval B

v(x) = TX + Ay

T\ clock offset

relative clock rate
(estimated)



Clock Skew between two Nodes

= Lower Bound on the clock skew between two neighbors

Error in the rate estimation:
— Jitter in the message delay
— Beacon interval

— Number of beacons k

- J
=T~ =
BEVE
Synchronization error:
J

\y—y|~\/—E

Beacon interval B



Multi-hop Clock Synchronization

= Nodes forward their current estimate of the reference clock
Each synchronization beacon is affected by a random jitter J

J J, J J, Js

Ja

= Sum of the jitter grows with the square-root of the distance
stddev(J, +J, +Jy+J,+ s + ... J ;) = Vdxstddev(J)

Single-hop: Multi-hop:

) J ) Jvd
y_y|N\/—E :> y—y|NW




Linear Regression (e.g. FTSP)

=  FTSP uses linear regression to compensate for clock drift
Jitter is amplified before it is sent to the next hop

v(x) = TX + Ay

T\ clock offset

relative clock rate
(estimated)

Beacon interval B



The PulseSync Protocol

e Send fast synchronization pulses through the network
— Speed-up the initialization phase

— Faster adaptation to changes in temperature or network topology

Beacon time B

\

b
FTSP @ - ]
Expected time 3 -
= D-B/2 @ R t
Beacon time B
( : |
: "
PulseSync @ ]
Expected time @ -
= D'tpulse @ - t



The PulseSync Protocol (2)

Remove self-amplification of synchronization error
— Fast flooding cannot completely eliminate amplification

v(x) =X + Ay

T\ clock offset

relative clock rate
(estimated)

Beacon interval B
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FTSP vs. PulseSync

Global Skew (us)

Global Clock Skew
Maximum synchronization error between any two nodes
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FTSP vs. PulseSync

Synchronization error (us)

Sychnronization Error vs. distance from root node
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Credits

e Approximation algorithms for minimum max stretch spanning tree, e.g.
Emek and Peleg, 2004.

e More credits to come



That’s all!

Questions & Comments?
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