Clock Synchronization
Part 2, Chapter 5

by

Roger Wattenhofer

H Zurich — Distributed Computing — www.disco.ethz.ch

YO[I TUhé Clock Synchronization

Overview

* Motivation

 Real World Clock Sources, Hardware and Applications
* Clock Synchronization in Distributed Systems

* Theory of Clock Synchronization

* Protocol: PulseSync

Motivation

* Logical Time (“happened-before”)

 Determine the order of events in a distributed system

e Synchronize resources

* Physical Time
 Timestamp events (email, sensor data, file access times etc.)
* Synchronize audio and video streams

* Measure signal propagation delays (Localization)
* Wireless (TDMA, duty cycling)

* Digital control systems (ESP, airplane autopilot etc.)

5/4

Properties of Clock Synchronization Algorithms

External vs. internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time

— to aleader, to an averaged time, ...

* One-shot vs. continuous synchronization

— Periodic synchronization required to compensate clock drift

* Online vs. offline time information

— Offline: Can reconstruct time of an event when needed

* Global vs. local synchronization (explained later)

* Accuracy vs. convergence time, Byzantine nodes, ...

World Time (UTC)

e Atomic Clock
— UTC: Coordinated Universal Time
— Sl definition 1s := 9192631770 oscillation cycles of the caesium-133 atom
— Clocks excite these atoms to oscillate and count the cycles
— Almost no drift (about 1s in 10 Million years)
— Getting smaller and more energy efficient!

5/6

Atomic Clocks vs. Length of a Day

| '
L /’//”f’ +20s

“ . Lu k w ‘ | ' Ll‘k\lk +15s

coms ,””’ I NI' ‘1 “’||||'\,|"" Vi T
am LW HJI“M il | § o 4] Jiy | r 4% T
| | e - " il (AR || A i

| il I|l|| o
il { 7 U

Daily deviation of day length from S| based day (86'400s)
Moving 365-day average of deviation
Cumulative deviation since introduction of leap seconds

1ms -5s

. UTC leap secon d
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

5/7

Access to UTC

e Radio Clock Signal

g o

— Clock signal from a reference source
(atomic clock) is transmitted over a
long wave radio signal

— DCF77 station near Frankfurt,
Germany transmits at 77.5 kHz with a

transmission range of up to 2000 km fr
— Accuracy limited by the propagation (h»
(%
delay of the signal, Frankfurt-Zurich is
about 1ms s

g
.-
'-‘r"?-

— Special antenna/receiver hardware
required

What is UTC, really?

e International Atomic Time (TAl)

— About 200 atomic clocks [II:“-'E"""“
— About 50 national laboratories Bl PM

— Reduce clock skew by comparing and averaging
— UTC =TAIl + UTC leap seconds (irregular rotation of earth)

e GPS
— USNO Time

— USNO vs. TAI difference
is a few nanoseconds

Comparing (and Averaging)

°®)
(3
\\ L
Station A Station B
tan =ty — (tsyt+dy) tap = tg — (tsy+dp)

th =tap —taga = tp — (tsy +dp) —ty + (tsy +dy) = tg —ty +dy — dp

Global Positioning System (GPS)

e Satellites continuously transmit own position and time code
e Line of sight between satellite and receiver required

e Special antenna/receiver hardware required

e Time of flight of GPS signals varies between 64 and 89ms

e Positioning in space and time!

e What is more accurate,
GPS or Radio Clock Signal?

GPS Localization

Assuming that time of
GPS satellites is correctly
synchronized...

[[]

t1 ty ty t3 tsy

GPS Localization

S1—P
=t—1t
S Cp 1
ZC =t+t12_t2
S —
3 p :t+t13—t3
C
S —
|| "C p||=t+t1n—tn

¢ = speed of light

Find least squares solution in t and p

Keeping GPS Satellites synchronized

180° 150° 120° 60° 30° 0°

120° 150° 180°

75°

60°

75°

fo°

@M [COLORADO SPRING |
30° 0o
»
’_’Efpe CANAVERAL | / W AJALEIN
B L kL oA |,
\ m @b \eo AAL :
ASCENSION [DIEGO GARCIA] b}

30° 0 30°

- [+ y
60° 6Q°
75° - M f - |rse

180° 150° 120° 90° 60° 30° 0° 30° e0° 90° 120° 150° 1BO°®

Il MASTER CONTROL STATION @ MONITOR STATION A GROUND ANTENNA

* pralaunch Capability Station
(Functional Ground Antenna)

Alternative (Silly) Clock Sources

e AC power lines

Use the magnetic field radiating from electric AC power lines

AC power line oscillations are extremely stable
(drift about 10 ppm, ppm = parts per million)

Power efficient, consumes only 58 uW

Single communication round required to correct
phase offset after initialization

e Sunlight

Using a light sensor to measure the length of a day

15 4

Offline algorithm for reconstructing global _
timestamps by correlating annual solar patterns S i
(no communication required) T R A TR S S
Ful TN TN [
L a0

w4 S

I I I I I
Jan 2006 Jul 2006 dan 2007 Jul 2007 Jan 2008

Clock Devices in Computers

* Real Time Clock (IBM PC)

e Battery backed up
e 32.768 kHz oscillator + Counter
e Get value via interrupt system

e HPET (High Precision Event Timer)
* Oscillator: 10 Mhz ... 100 Mhz A, e .
e Upto 10 ns resolution! > oy Lo
e Schedule threads
* Smooth media playback

e Usually inside Southbridge

5/16

Clock Drift

* Clock drift: random deviation from the nominal rate dependent on power supply,
temperature, etc.

rate

1+€ ...

1—6 ...
>

* E.g. TinyNodes have a maximum drift of 30-50 ppm (parts per million)

921816 - '
This is a drift of up to
50us per second
921814 | or 0.18s per hour
T
L
z
é 921812 |
g
(T
921810
921808 L 1 1 'l 1 1 1 1 1
45 0 -5 0 5 10 15 20 25 30 35

Temperature (°C)

Clock Synchronization in Computer Networks

 Network Time Protocol (NTP)

* Clock sync via Internet/Network (UDP)
e Publicly available NTP Servers (UTC)

* You can also run your own server!

* Packet delay is estimated to reduce clock skew

Propagation Delay Estimation (NTP)

* Measuring the Round-Trip Time (RTT)

t Time accor- t
8 2 ding to B 3

Request Answer
from A fromB
A

o Time accor-
tl dingto A t4’

* Propagation delay 6 and clock skew © can be calculated

(ty —t1) — (t3 — t3)

5 =
2

9= (ty — (&1 +8)) — (ta — (3 + 6)) _ (t; —t1) + (t3 — t4)

2 2

Messages Experience lJitter in the Delay

= Problem: Jitter in the message delay
Various sources of errors (deterministic and non-deterministic)

A 0-100 ms 0-500 ms 1-10 ms
,{\«\e@ SendCmd Access Transmission

Reception Callback
0-100 ms

= Solution: Timestamping packets at the MAC layer
— litter in the message delay is reduced to a few clock ticks

Jitter Measurements

e Different radio chips use different paradigms
— Leftis a CC1000 radio chip which generates an interrupt with each byte.

— Rightis a CC2420 radio chip that generates a single interrupt for the packet
after the start frame delimiter is received.

|
Y BYTE 1 BYTE 2 BYTE 3 BYTE 4 N [x SFD BYTE 1 BYTE 2 BYTE 3
/

! ! ! !

1 1 1
by 4 bz Iz b: & by 1y by L
BYTE_TIME

1e+06

e In wireless networks propagation
can be ignored (<1us for 300m).

100000
10000

1000

e Still there is quite some variance
in transmission delay because of 100
latencies in interrupt handling
(picture right).

Measurements

10

Ticks

Clock Synchronization in Computer Networks (PTP)

Precision Time Protocol (PTP) is very similar to NTP

 Commodity network adapters/routers/switches can assist in time sync by
timestamping PTP packets at the MAC layer

* Packet delay is only estimated on request

e Synchronization through one packet from server to clients!

 Some newer hardware (1G Intel cards, 82580) can timestamp any packet
at the MAC layer

* Achieving skew of about 1 microsecond

Hardware Clock Distribution

* Synchronous digital circuits require all components to act in sync

20 20
15 204
10 20
[

LT
S I

20—

* The bigger the clock skew, the longer the clock period

* The clock signal that governs this rhythm needs to be distributed to all
components such that skew and wire length is minimized

e Optimize routing, insert buffers (also to improve signal)

Clock Synchronization Tricks in Wireless Networks

» Reference Broadcast Synchronization (RBS) <=2
Synchronizing atomic clocks

* Sender synchronizes set of clocks

* Time-sync Protocol for Sensor Networks (TPSN) €<= try
Network Time Protocol

e Estimating round trip time to sync more accurately tq

(FTSP)<—>Precision Time Protocol
* Timestamp packets at the MAC Layer to improve)

accuracy / \
@

* Flooding Time Synchronization Protocol T\

Best tree for tree-based clock synchronization?

e Finding a good tree for clock synchronization is a tough problem

— Spanning tree with small (maximum or average) stretch.

e Example: Grid network, with n = m? nodes.

e No matter what tree you use, the maximum
stretch of the spanning tree will always be
at least m (just try on the grid).

e In general, finding the minimum max
stretch spanning tree is a hard problem,
however approximation algorithms exist.

0—0 0—0
0—0 O0—®
®—0 -0 @0
O—® B O D
D —B—B—D B

Clock Synchronization Tricks (GTSP)

= Synchronize with all neighboring
nodes

* Broadcast periodic time beacons,
e.g.,every 30s

* No reference node necessary

= How to synchronize clocks without
having a leader?

 Follow the node with the
fastest/slowest clock?

* Idea: Go to the average clock
value/rate of all neighbors (including
node itself)

Variants of Clock Synchronization Algorithms

Tree-like Algorithms
e.g. FTSP

root

Bad local
skew

Distributed Algorithms
e.g. GTSP

All nodes consistently average
errors to all neigbhors

Network Synchronization Error (us)

FTSP vs. GTSP: Global Skew

e Network synchronization error (global skew)
— Pair-wise synchronization error between any two nodes in the network

FTSP (avg: 7.7 us)

0 5000 10000 15000 20000
Time (s)

Network Synchronization Error (us)

100

80

60

40

20|

GTSP (avg: 14.0 ps)

5000

10000
Time (s)

15000

20000

Neighbor Synchronization Error (us)

FTSP vs. GTSP: Local Skew

e Neighbor Synchronization error (local skew)
— Pair-wise synchronization error between neighboring nodes

e Synchronization error between two direct neighbors:

FTSP (avg: 15.0 pus) GTSP (avg: 2.8 ps)

100 100

80 80

60

60

40

40

Neighbor Synchronization Error (us)

20

0 5000
Time (s) Time (s)

Global vs. Local Time Synchronization

e Common time is essential for many applications:

6\0‘03\ — Assigning a timestamp to a globally sensed event (e.g. earthquake)
Locd — Precise event localization (e.g. shooter detection, multiplayer games)
_Oca\ — TDMA-based MAC layer in wireless networks

Locdl _ Coordination of wake-up and sleeping times (energy efficiency)

[] B

Theory of Clock Synchronization

 Given a communication network
1. Each node equipped with hardware clock with drift
2. Message delays with jitter

worst-case (but constant)

Goal: Synchronize Clocks (“Logical Clocks”)
. Both global and local synchronization!

Time Must Behave!

 Time (logical clocks) should not be allowed to stand still or jump

. Let’s be more careful (and ambitious):

. Logical clocks should always move forward
 Sometimes faster, sometimes slower is OK.
e But there should be a minimum and a maximum speed.

* Asclose to correct time as possible!

Formal Model

 Hardware clock H,(t) = [;o 1 h,(7) dT
with clock rate h (t) € [1-€,1+¢€]

* Logical clock L () which increases
at rate at least 1 and at most 3

* Message delays € [0,1]

 Employ a synchronization algorithm
to update the logical clock according
to hardware clock and
messages from
neighbors

Time is 140

<
/ .
X

=)

Clock drift € is typically small, e.g.
€ ~10* for a cheap quartz oscillator

Logical clocks with rate less than 1
behave differently (“synchronizer”)

Neglect fixed share of delay,
normalize jitter

Time is 152
Hv

N —

Time is 150

L? \

=)
¢ P

Synchronization Algorithms: An Example (“Amax”)

e (Question: How to update the logical clock Allow 3 = 0o
based on the messages from the neighbors?
e |dea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if larger than local clock value)

— forward new values immediately
e Optimum global skew of about D
e Poor local property
— First all messages take 1 time unit...

— ...then we have a fast message!

e New time is D+x New time is D+x skew DI
Hardware

Clock Time is D+x Time is D+x Time is D+x f_H
&) &) - Q) &,

Clock value: Old clock value: Old clock value: Old clock value:
D+x D+x-1 x+1 X

v

Synchronization Algorithms: Amax’

e The problem of A™* is that the clock is always increased to the maximum
value

* Idea: Allow a constant slack y between the maximum neighbor clock value
and the own clock value

« The algorithm A”% sets the local clock value L t) to
Lty = max(L;(t), maxjey,L;i(t) —)

—> Worst-case clock skew between two neighboring nodes is still (D)
independent of the choice of y!

e How can we do better?

— Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?

— ldea: Take the clock of all neighbors into account by choosing the average
value?

Local Skew: Overview of Results

Everybody‘s expectation,
five years ago (,,solved”)

Blocking
algorithm

Dynamic Networks!

[Lenzen et al., FOCS 2008]

5/36

Enforcing Clock Skew

e Messages between two neighboring nodes may be fast in one direction
and slow in the other, or vice versa.

e A constant skew between neighbors may be ,hidden”.

* |n a path, the global skew may be in the order of D/2.

Local Skew: Lower Bound

h, =1 L, (£)=x hy=1+¢ Lyt =x+"/,

L]
L) .' A
L] L]
° L]
° i A o
L]
L]

/ .
lo =D — -

h, =1 Ly (1) h, =1 L, (%)

- Higher

e Add 10/2 skew in 10/26 time, messing with clock rates and messages
 Afterwards: Continue execution for 10/4(ﬁ_1> time (all h, = 1)

—> Skew reduces by at most l°/4 - at least l°/4 skew remains

—> Consider a subpath of length [; = [- “/2(p—1) With at least 11/4 skew

- Add 11/2 skew in 11/26 = 10/4(3_1) time - at least 3/, - [; skew in subpath
e Repeat this trick (+)4,-%,+%,-%,...) IOgZ(B—l)/ D times

Theorem: Q(logg_l/ D) skew between neighbors

Local Skew: Upper Bound

e Surprisingly, up to small constants, the Q(Iog(ﬁ_l)/€D) lower bound can be
matched with clock rates € [1,3] (tough part, not included)

e We get the following picture [Lenzen et al., PODC 2009]:

max rate 3 1+e 1+6(¢) 1+Ve 2
local skew O(log D) | O(logy, D) | O(log,, D) | O(log,, D)
We can have both ... because too large
smooth and accurate clock rates will amplify
clocks! the clock drift e.

e |n practice, we usually have 1/¢ = 10% > D. In other words, our initial
intuition of a constant local skew was not entirely wrong! ©

Back to Practice: Synchronizing Nodes

= Sending periodic beacon messages to synchronize nodes

Beacon interval B
I

[|
100

\

t @ reference clock

t=100 |

1] | (1]

jitter jitter

(@

How accurately can we synchronize two nodes?

= Message delay jitter affects clock synchronization quality

Beacon interval B

v(x) = TX + Ay

T\ clock offset

relative clock rate
(estimated)

Clock Skew between two Nodes

= Lower Bound on the clock skew between two neighbors

Error in the rate estimation:
— Jitter in the message delay
— Beacon interval

— Number of beacons k

- J
=T~ =
BEVE
Synchronization error:
J

\y—y|~\/—E

Beacon interval B

Multi-hop Clock Synchronization

= Nodes forward their current estimate of the reference clock
Each synchronization beacon is affected by a random jitter J

J J, J J, Js

Ja

= Sum of the jitter grows with the square-root of the distance
stddev(J, +J, +Jy+J,+ s + ... J ;) = Vdxstddev(J)

Single-hop: Multi-hop:

) J) Jvd
y_y|N\/—E :> y—y|NW

Linear Regression (e.g. FTSP)

= FTSP uses linear regression to compensate for clock drift
Jitter is amplified before it is sent to the next hop

v(x) = TX + Ay

T\ clock offset

relative clock rate
(estimated)

Beacon interval B

The PulseSync Protocol

e Send fast synchronization pulses through the network
— Speed-up the initialization phase

— Faster adaptation to changes in temperature or network topology

Beacon time B

\

b
FTSP @ -]
Expected time 3 -
= D-B/2 @ R t
Beacon time B
(: |
: "
PulseSync @]
Expected time @ -
= D'tpulse @ - t

The PulseSync Protocol (2)

Remove self-amplification of synchronization error
— Fast flooding cannot completely eliminate amplification

v(x) =X + Ay

T\ clock offset

relative clock rate
(estimated)

Beacon interval B

5/46

FTSP vs. PulseSync

Global Skew (us)

Global Clock Skew
Maximum synchronization error between any two nodes

300

200

100

Average Global Skew ——

TS P Maximum Global Skew —s—

0 5000 10000 15000 20000

Time (s)

Synchronization Error

Average (t>2000s)
Maximum (t>2000s)

Global Skew (us)

300 ' Average Global Skew —+—
aximum Global Skew —+—
PuIseSync e okal S
250 J
200
150
100
Time (s)
FTSP PulseSync
23.96 pus 4.44 pus
249 us 38 us

FTSP vs. PulseSync

Synchronization error (us)

Sychnronization Error vs. distance from root node

100

80 +

60 +

40 {

20 +

FTSP

PulseSync

il

10

Distance (Hops)

ﬁ&ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ&ﬁﬁﬁﬁ

Distance (Hops)

Credits

e Approximation algorithms for minimum max stretch spanning tree, e.g.
Emek and Peleg, 2004.

e More credits to come

That’s all!

Questions & Comments?

S a o
R

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

