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Network Updates

¢ The Internet: Designed for selfish participants
— Often inefficient (low utilization of links), but robust

e But what happens if the WAN is controlled by a single entity?
— Examples: Microsoft & Amazon & Google ...
— They spend hundreds of millions of dollars per year

Overview

¢ Software-Defined Networking
* lLoop-Free Updates
» Consistent Updates
¢ Bandwidth
— Maximization
— Fairness
— Updates

Software-Defined Networking

Possible solution: Software-Defined Networking (SDNs)
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e General Idea: Separate data & control plane in a network

¢ Centralized controller updates networks rules for optimization
— Controller (control plane) updates the switches/routers (data plane)

Virtual Services <(ummmp Controller 4mmm) Physical Network

¢ Centralized controller implemented with replication, e.g. Paxos



Example

Dependencies

Version Numbers

+ stronger packet coherence
— version number in packets
- switches need to store both versions

“Better” Solution
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Minimum SDN Updates?
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Minimum Updates: Another Example
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Minimal Dependency Forest
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Next: An algorithm to compute minimal dependency forest.
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No node can improve
without hurting another
node

Minimum vs. Minimal

Algorithm for Minimal Dependency Forest

.

Each node in one of three states: old, new, and limbo (both old and new)

New /
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Algorithm for Minimal Dependency Forest

e Each node in one of three states: old, new, and limbo (both old end new)
* Originally, destination node in new state, all other nodes in old state
* Invariant: No loop!
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Loop Detection

new
*  Will a new rule u.new = v induce a loop? U — >0 v
— We know that the graph so far has no loops
— Any new loop must contain the edge {u,v)

* In other words, is node u now reachable from node v?
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* Depth first search (DFS) at node v
— If we visit node u: the new rule induces a loop
— Else: noloop
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Algorithm for Minimal Dependency Forest

Initialization
* Old node u: No loop* when adding niew pointer, move node to limbo!
* This node u will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide
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Algorithm for Minimal Dependency Forest

¢ Limbo node u: Remove old pointer {move node to new)
* Consequence: Some old nodes v might move to limbo!
* Node v will be child of u in dependency forest!
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Algorithm for Minimal Dependency Forest

Process terminates

* You can always move a node from limbo to new.

* Can you ever have old nodes but no limbo nodes? No, because...

...one can easily derive a contradiction!

Consistency Space

Balf

Main Contribution

For a given consistency property, what
is the minimal dependency possible?
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It’s not just how to compute new rules.

It is also how to gracefully get
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from current to new configuration,

respecting consistency.
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Architecture

Routing Consistency Network
policy property characteristics
Rule New Update plan Update Plan optimizer

enerator rules enerator DAG and executor

Multiple Destinations using Prefix-Based Routing
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* No new “default” rule can be introduced without causing loops
+ Solution: Rule-Dependency Graphs!
* Deciding if simple update schedule exists is hard!

Update DAG
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Breaking Cycles
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Architecture Breaking Cycles
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Routing Consistency Network
policy property characteristics
| | | U o< w U w
Rule New Update plan Update Plan optimizer
enerator rules enerator DAG and executor
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Architecture
Routing Consistency Network
policy property characteristics

Are Minimal Dependencies Good?
Rule New Update plan Update Plan optimizer
enerator rules enerator DAG and executor
-"lt depends 8 8 l |

[ Plan optimizer] 1 o
(But | 4 executor| Will fix it.)




Real Application: Inter-Data Center WANs

Hong Kong

Think: Google, Amazon, Microsoft

. NORTH AMERICA
Seattle
New York

2 Dublin

Los Angeles
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Problem: Typical Network Utilization

Utilization

Background
traffic

Non-background traffic

Time [1 Day]
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Problem: Typical Network Utilization

Utilization
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Problem: Typical Network Utilization
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Another Problem: Online Routing Decisions The SWAN Project

flow arrival order: A, B, C [global optimization for high utilization]
each link can carry at most one flow (in both directions)

traffic s, topology,
demand % traffic
1 2 3 4 rate network
allocation configuration
4
Hosts WAN
7 6 5 SWItCHES
MPLS-TE Better [rate limiting] [forwarding plane update]
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Algorithms? Multicommodity Flow LP
* Priority classes {2-3)
* Allocate highest priority first
Maximize throughput max ) f;
* Solve with multi-commodity flow {LP} within each class '
~ Flows are splittable Flow less than demand 0<f <d
— Well understood, fast enough for our input {seconds)
Flow less than capacity Y. fie) < cle)
* But: Within a priority class we want max-min fairness (“f; = f, max f”)
- Definition: Make nobody richer at cost of someone poorer Flow conservation on inner Z filu,v) = Z Fi(v,w)
— Works, but now one has to solve linearly many LPs, which is too slow {hours}) nodes W A W L
— A perfect example of algorithm engineering?
Flow definition on source, Z fi(sy,v) = Z fitwt)=f;
» Solution: Fairness approximation! destination v U
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Approximated max-min fairness

1 demand dg

demand d

demand dj ’

demand dy | |
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| demand d,

Approximated max-min fairness

I MCF solver: i
Maximize throughput demand d;
Prefer shorter paths

demand d4 |

demand dj

Approximated max-min fairness

demand dx

demand dy

demand dj

Approximated max-min fairness

I MCF salver: 1
Increase demand window demand ds
Fix demand of smallar flows 1 |

demand d,

(L+e)*f

(1+of

demand d,
demandd, [



Approximated max-min fairness

MCF solver:
Continue, until all
flows fixed

demand dj

demand d,

demand d4
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Fairness: SWAN vs. MPLS TE
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Flows sorted according to demand
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Approximated max-min fairness

demandds

(1 +e*f

demand dj

d+af
demand d,
demand d4

* In theory, this process is (1 + &) competitive
* In practice, with £ = 1, only 4% of flows deviate over 5% from their fair share
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Problem: Consistent Updates

(o155

initial state ) target state
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Capacity-Consistent Updates
* Not directly, but maybe through intermediate states?
¢ Solution: Leave a fraction s slack on each edge, less than 1/s steps

» Example: Slack = 1/3 of link capacity

Init. state target state
A=2/3 B=2/3

A=2/3

Capacity-Consistent Updates

* Alternatively: Try whether a solvable LP with k steps exist, fork =1,2,3 ...

— Sum of flows in steps j and j + 1, together, must be less than capacity limit

Only growing flows fio < fik

Flow less than capacity Z max (ﬁj(e),]"ijﬂ(e)) < ¢(e)
i

Flow conservation on inner
nodes Z fil (u,v) = Z f;l (v, w)
i w

Flow definition on source,

destination zv]‘y (s;,v) = Zuﬁ’ (wt)=f

Example: Slack = 1/3 of link capacity

Init. state target state

Evaluation platforms

e Prototype
® 5 DCs across 3 continents
® 10 switches

¢ Data-driven evaluation
® 40+ DCs across 3 continents

* 80+ switches




Time for One Network Update Prototype Evaluation
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¢ Introducing consistent network updates was done in Mark Reitblatt et. al., T h a n k YO u !
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¢ For minimal loop-free updates and more see Ratul Mahajan et. al.,
HotNets 2013

¢ Deciding if a simple update schedule exists is hard was proven in Laurent
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Questions & Comments?

www.disco.ethz.ch
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