Network Updates

Part 3, Chapter 6

N

‘&o’%w -

Roger Wattenhofer

ETH Zurich - Distributed Computing Group

Network Updates

¢ The Internet: Designed for selfish participants
— Often inefficient (low utilization of links), but robust

e But what happens if the WAN is controlled by a single entity?
— Examples: Microsoft & Amazon & Google ...
— They spend hundreds of millions of dollars per year

Overview

¢ Software-Defined Networking
* lLoop-Free Updates
» Consistent Updates
¢ Bandwidth
— Maximization
— Fairness
— Updates

Software-Defined Networking

Possible solution: Software-Defined Networking (SDNs)

- |
e

Y/
e General Idea: Separate data & control plane in a network

¢ Centralized controller updates networks rules for optimization
— Controller (control plane) updates the switches/routers (data plane)

Virtual Services <(ummmp Controller 4mmm) Physical Network

¢ Centralized controller implemented with replication, e.g. Paxos

Example

Dependencies

Version Numbers

+ stronger packet coherence
— version number in packets
- switches need to store both versions

“Better” Solution

=Re—"<

V|

Minimum SDN Updates?

S

Minimum Updates: Another Example

u u
w - w
d d
1% \4
w w
or l
U v

6/9

Minimal Dependency Forest

u X U X
| | d ; '/d
ve Y v)y

Next: An algorithm to compute minimal dependency forest.

6/11

No node can improve
without hurting another
node

Minimum vs. Minimal

Algorithm for Minimal Dependency Forest

.

Each node in one of three states: old, new, and limbo (both old and new)

New /

6/10

6/12

Algorithm for Minimal Dependency Forest

e Each node in one of three states: old, new, and limbo (both old end new)
* Originally, destination node in new state, all other nodes in old state
* Invariant: No loop!

6/13

Loop Detection

new
* Will a new rule u.new = v induce a loop? U — >0 v
— We know that the graph so far has no loops
— Any new loop must contain the edge {u,v)

* In other words, is node u now reachable from node v?

......

0

. +
LT ot
. T

£ new -

* Depth first search (DFS) at node v
— If we visit node u: the new rule induces a loop
— Else: noloop

6/15

Algorithm for Minimal Dependency Forest

Initialization
* Old node u: No loop* when adding niew pointer, move node to limbo!
* This node u will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide

6/14

Algorithm for Minimal Dependency Forest

¢ Limbo node u: Remove old pointer {move node to new)
* Consequence: Some old nodes v might move to limbo!
* Node v will be child of u in dependency forest!

6/16

Algorithm for Minimal Dependency Forest

Process terminates

* You can always move a node from limbo to new.

* Can you ever have old nodes but no limbo nodes? No, because...

...one can easily derive a contradiction!

Consistency Space

Balf

Main Contribution

For a given consistency property, what
is the minimal dependency possible?

6/17 6/18

It’s not just how to compute new rules.

It is also how to gracefully get

pain s Glelal
sulpat all
, Alwnys
Trontnal guaraniesd
Dirop Tispuenible Add helore
Treedom TETVE
s ¥ ik & s
lirnit add
Loop Tmpoesible Ruls deg. Torest | Faole dap. tres
frendom
Packet Tonpaesiiole Per-foay var. Global ver.
noliergues b
Bandwidth Terggeathls Btagnd partial
Tiamdi; WS

from current to new configuration,

respecting consistency.

6/19 6/20

Architecture

Routing Consistency Network
policy property characteristics
Rule New Update plan Update Plan optimizer

enerator rules enerator DAG and executor

Multiple Destinations using Prefix-Based Routing

V A%
A* A
U w U 1%%

* No new “default” rule can be introduced without causing loops
+ Solution: Rule-Dependency Graphs!
* Deciding if simple update schedule exists is hard!

Update DAG

Insert rule i+ ¢
atnode [}

Wait 10s

Remove rule s
‘ ‘
atnode v

Breaking Cycles

1%
HA

Insert at w:
! dest v:wovw |

Remove at w:

" destv: wow M

Insert u>w

Remove w—> 1]

Insert rule t
at node w

' Remove rule
q atnode x

| Logical OR l

Insert rule p |4

"i;

w u w

i ‘ Insert > H\

| Rernave v>w/|

Architecture Breaking Cycles

1% 1%

—p
Routing Consistency Network
policy property characteristics
| | | U o< w U w
Rule New Update plan Update Plan optimizer
enerator rules enerator DAG and executor

Insert at w:
| dest v wow “w

Insert > ‘I\

Remove at w:‘
dest v: wov

| Rernove v>w/|

Architecture
Routing Consistency Network
policy property characteristics

Are Minimal Dependencies Good?
Rule New Update plan Update Plan optimizer
enerator rules enerator DAG and executor
-"lt depends 8 8 l |

[Plan optimizer] 1 o
(But | 4 executor| Will fix it.)

Real Application: Inter-Data Center WANs

Hong Kong

Think: Google, Amazon, Microsoft

. NORTH AMERICA
Seattle
New York

2 Dublin

Los Angeles

6/29

Problem: Typical Network Utilization

Utilization

Background
traffic

Non-background traffic

Time [1 Day]

6/31

Problem: Typical Network Utilization

Utilization

0.8
0.6
0.4
0.2

“peak before rate adaptation

C.NOL

J/0

peak reduction

o

mean

1 1 1 1

1

1 1

Time [1 Day]

Problem: Typical Network Utilization

Utilization

k|

peak after rat

e adaptatioﬁ

Time [1 Day]

6/30

6/32

Another Problem: Online Routing Decisions The SWAN Project

flow arrival order: A, B, C [global optimization for high utilization]
each link can carry at most one flow (in both directions)

traffic s, topology,
demand % traffic
1 2 3 4 rate network
allocation configuration
4
Hosts WAN
7 6 5 SWItCHES
MPLS-TE Better [rate limiting] [forwarding plane update]
6/33 6/34
Algorithms? Multicommodity Flow LP
* Priority classes {2-3)
* Allocate highest priority first
Maximize throughput max) f;
* Solve with multi-commodity flow {LP} within each class '
~ Flows are splittable Flow less than demand 0<f <d
— Well understood, fast enough for our input {seconds)
Flow less than capacity Y. fie) < cle)
* But: Within a priority class we want max-min fairness (“f; = f, max f”)
- Definition: Make nobody richer at cost of someone poorer Flow conservation on inner Z filu,v) = Z Fi(v,w)
— Works, but now one has to solve linearly many LPs, which is too slow {hours}) nodes W A W L
— A perfect example of algorithm engineering?
Flow definition on source, Z fi(sy,v) = Z fitwt)=f;
» Solution: Fairness approximation! destination v U

6/35 6/36

Approximated max-min fairness

1 demand dg

demand d

demand dj ’

demand dy | |

| o

| demand d,

Approximated max-min fairness

I MCF solver: i
Maximize throughput demand d;
Prefer shorter paths

demand d4 |

demand dj

Approximated max-min fairness

demand dx

demand dy

demand dj

Approximated max-min fairness

I MCF salver: 1
Increase demand window demand ds
Fix demand of smallar flows 1 |

demand d,

(L+e)*f

(1+of

demand d,
demandd, [

Approximated max-min fairness

MCF solver:
Continue, until all
flows fixed

demand dj

demand d,

demand d4

6/41

Fairness: SWAN vs. MPLS TE

I | |

I

Relative
deviation

- MPLSfE , ’ ’ N I

OFNWD OHNIULE

Flows sorted according to demand

6/43

Approximated max-min fairness

demandds

(1 +e*f

demand dj

d+af
demand d,
demand d4

* In theory, this process is (1 + &) competitive
* In practice, with £ = 1, only 4% of flows deviate over 5% from their fair share

6/42

Problem: Consistent Updates

(o155

initial state) target state

6/44

Capacity-Consistent Updates
* Not directly, but maybe through intermediate states?
¢ Solution: Leave a fraction s slack on each edge, less than 1/s steps

» Example: Slack = 1/3 of link capacity

Init. state target state
A=2/3 B=2/3

A=2/3

Capacity-Consistent Updates

* Alternatively: Try whether a solvable LP with k steps exist, fork =1,2,3 ...

— Sum of flows in steps j and j + 1, together, must be less than capacity limit

Only growing flows fio < fik

Flow less than capacity Z max (ﬁj(e),]"ijﬂ(e)) < ¢(e)
i

Flow conservation on inner
nodes Z fil (u,v) = Z f;l (v, w)
i w

Flow definition on source,

destination zv]‘y (s;,v) = Zuﬁ’ (wt)=f

Example: Slack = 1/3 of link capacity

Init. state target state

Evaluation platforms

e Prototype
® 5 DCs across 3 continents
® 10 switches

¢ Data-driven evaluation
® 40+ DCs across 3 continents

* 80+ switches

Time for One Network Update Prototype Evaluation

. . optimal line
tyts taty ts dips due to rate adaptation
[: AL] |
73 Compute allocation & rule change plan Goodput 0%
5~ Compute congestion-controlled plan (normalized 0.6
' 3 . . & stacked) 0.4
T » Wait for rate limiting 0.2
o i : 0
076Change SWItC;h ryles
_Rate Time [minutes]
i 10 L limiting
0 5 Up]tfi%te tim%sis] 20 25 Traffic: (VDC-pair) 125 TCP flows per class

High utilization Flexible sharing
SWAN’ s goodput: Interactive protected;
98% of an optimal method background rate-adapted

Data-driven Evaluation of 40+ DCs Summary

Self Downstre eam | Downstre: am Global

7

Tmpossible.

Tmpossible

Taipo Tule dep. Torest | Tale dep. tree

Tipossible

Tmposibla

c

g Routing Consistancy Metwork

.g palicy property characteristics

.4_:

> Rule New Update plan Update Plan optimizer
enerator rules enerator DAG and executor

SWAN
SWAN w/o Rate MWE,'E-S
ontrol

References

¢ Introducing consistent network updates was done in Mark Reitblatt et. al., T h a n k YO u !

SIGCOMM 2012

¢ For minimal loop-free updates and more see Ratul Mahajan et. al.,
HotNets 2013

¢ Deciding if a simple update schedule exists is hard was proven in Laurent
Vanbever et. al., IEEE/ACM Trans. Netw. 2012

* For one of the first papers on loop-detection you can look at Robert
Tarjan, Depth-first search and linear graph algorithms, 1972

¢ For more on the SWAN-project see Chi-Yao Hong et. al., SIGCOMM 2013

Questions & Comments?

www.disco.ethz.ch

Evaluation

100% II ii

80%

II II ’
L))
60%

1
40% m3
I -
20%
0%

1221 1239 1755 3257 3967 6461

