Parallel Computing
Part 2, Chapter 8

Overview

- Structure of a parallel computer
- Parallel Software for 16 cores (CPU)
- Parallel Software for 1,600 cores (GPU)

Programming Parallel Systems

- So far, we talked (mainly) about storage systems
 - Main question: How can we guarantee a consistent system state

- Already desktop systems can be used for parallel computation
 - Distribute workload in the system!
 - How can we do this?
 - What’s underneath the hood?

Programming Parallel Systems: Basic Idea

- Our model for parallel programming:

- A job is split into many small tasks
 - These tasks can be executed in parallel

- The tasks can be distributed
 - Each “worker thread” may get many tasks

- The partial results may be merged
 - This is just another kind of “task”
Programming Parallel Systems: Promise and Reality

Promise

- Memory

A Real Computer?

- Memory/4
- Processor 4
- Processor 3
- Processor 1
- Processor 2
- Memory/4

- Fast
- Not so fast

A Real Processor

- Proc. Core
- Cache
- Memory/4

- Fast
- Not so fast

- More Processors...
- Not so fast
- Slow

Programming Parallel Systems: A To-Do List

- **Promise**
 - Need to know your hardware for maximum efficiency
 - Cache Sizes, Topology & Bandwidth of Buses
 - Think: Data locality, (hidden!) communication cost

- **Intel Processor**
 - HT Core
 - Cache

- **More Processors...**
 - ... with more Memory

- **Write code** for worker threads
- **Distribute** the threads to the cores
- **Split** the job into smaller tasks (how small?)
- **Assign** tasks to threads
- **Balance** the load on all threads
- **Collect** the (partial) results from the machines
- **Assembly** the results

- **Should be fast as well**, i.e., make use of **locality**
 - cache locality *and* prefer local memory over remote memory!

- The **complexity** of the program increases significantly!!!

- **Solution?**
OpenMP

- OpenMP is a specification developed by AMD, Cray, IBM, Intel, NVIDIA, ...
 - Parallelization
 - Load balancing
 - Implicit use of locality
 - If you know what you are doing
 - All in one library!

- Not really a library, but a language-extension
 - C, C++, Fortran (still used in scientific computing)

- Supports Basic Parallel Constructs
 - Loops, basic reductions, tasks, ...
 - Synchronization

OpenMP: An Example

```cpp
std::vector<int> a(N);
std::vector<int> b(N);

void sequential()
{
    for (int i = 0; i < N; i++)
        a[i] *= b[i];
}

void parallel()
{
    #pragma omp parallel for
    for (int i = 0; i < N; i++)
        a[i] *= b[i];
}
```

OpenMP: Under the Hood

```cpp
std::vector<int> a(N);
std::vector<int> b(N);
```

OpenMP: Digging Deeper

- Physical memory location depends on Operating System
- Virtual Memory presented as continuous block
 - Physical Memory may be scattered
 - A single page of virtual/physical memory cannot be scattered
 - Typical page sizes: 4KB, SuperPage: 4MB

- Many OSes
 - Explicitly: Offer system call to pin a page to a physical processor by hand
 - Implicitly: Pin virtual pages to processor that first accesses it
 - How is this done?
OpenMP: Static Scheduling

```c
int *a, *b;
a = (int*)malloc(N*sizeof(int));
b = (int*)malloc(N*sizeof(int));
```

```c
void fill()
{
    #pragma omp parallel for schedule(static)
    for (int i = 0; i < N; ++i) {
        a[i] = a_value(i);
        b[i] = b_value(i);
    }
}
```

```c
void parallel()
{
    #pragma omp parallel for schedule(static)
    for (int i = 0; i < N; ++i)
        a[i] *= b[i];
}
```

4 Procs x 4 Cores = 16 Threads
Speedup: 6.7x
Only 6.7x?

Not Every Parallel Program is a for-loop

• Barely scratched the surface of OpenMP
 – Reductions
 – Arbitrary task types
 – Synchronization primitives

Not Every Parallel Program is a for-loop

• Barely scratched the surface of OpenMP
 – Reductions

```c
int sum = 0;
#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < N; i++) {
    sum += a[i] + b[i];
}
```

```c
cout<<"A ";
#pragma omp parallel
{
    #pragma omp single
    {
        #pragma omp task
        {
            cout<<"car ";
        }
        #pragma omp task
        {
            cout<<"race ";
        }
    }
    #pragma omp taskwait
cout<<"is fun to watch";
}
cout<<endl;
```

A race car race
(or)
A car race race
(or...)
Not Every Parallel Program is a for-loop

• Barely scratched the surface of OpenMP
 – Reductions
 – Arbitrary task types
 – Synchronization primitives
 – …

• Already a simple loop can be tricky

• Simple loops are everywhere!
 – Think: Vectors, Matrix Multiplication
 – Simple loops deserve their own hardware

Graphic Processing Unit (GPU)

• The complexity of the architecture increases further

• The GPU consists of compute units, each with multiple stream cores
 – As an example, AMD Radeon R9 290X has 2816 stream cores

The Real Deal

• Different compute units can do different things

• All stream cores execute the same instruction sequence
 – With separate local memories

Graphic Processing Unit (GPU)

• What is this good for?
Matrix Operations

- Matrix operations are the core of graphics computations
- For example, matrix multiplication can be highly parallelized
- Naive: $O(n^3)$ multiplications

\[
\begin{array}{cccc}
9 & 0 & 4 & 1 \\
9 & 1 & 3 & 1 \\
1 & 0 & 4 & 6 \\
2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
\end{array}
\]

Matrix Multiplication

- Naive: $O(n^3)$ multiplications
 - Small rounding errors
- Better: Strassen $O(n^{2.807})$ multiplications
 - Re-use partial results
 - Can also be done in parallel
- Even better? Coppersmith-Winograd $O(n^{2.375477})$ multiplications
 - Asymptotically better
 - But not for practical matrix sizes

All-Pairs Shortest Path

- Some problems can be represented nicely by matrices
- Let $G = (V, E)$ be a connected graph. The adjacency matrix M of G has a 1-entry on $M(u, v)$ if there is an edge between nodes u and v

\[
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{array}
\]

All-Pairs Shortest Path

- The adjacency matrix gives us all nodes at distance 1
- To get nodes at distance 2, multiply the adjacency matrix by itself

\[
M^2 (A, F) = M(A, A)M(A, F) + M(A, B)M(B, F) + \ldots + M(A, F)M(F, F) \geq 1
\]
Solving the All-Pairs Shortest Path Problem

• Similarly, get nodes at distance 3 by multiplying M^2 by M:
 $M^3(A, I) = M^2(A, A)M(A, I) + M^2(A, F)M(F, I) + \cdots \geq 1$

All-Pairs Shortest Path

• After i multiplications, $M(u, v) \neq 0$ if there is a path of length at most $i + 1$ from u to v

• After diameter(G) − 1 multiplications, we have found all nodes

• The length of the shortest path between any two nodes u and v is the index of the step i for which, $M^{i−1}(u, v) = 0$ and $M^i(u, v) \geq 1$
 – Write distances to output matrix Q

• We can store the partial paths found in the intermediate steps
 – get the actual shortest paths in the end

Conclusion

• OpenMP
 – Widely used in scientific computing
 – CPUs execute ‘real’ threads
 – Don’t have to execute the same line of code everywhere

• GPUs have way more cores than CPUs
 – Enables more parallelism
 – Cores execute the same instruction per clock cycle
 – Efficient for matrix operations
 – Can be programmed using
 – OpenCL
 – CUDA
 – possibly OpenMP in the future

Outlook

• Faults
 – OpenMP, OpenCL, CUDA don’t care about faults
 – Hadoop/MapReduce: Store all intermediate steps, for fault-tolerance
 – Apache Spark: Recompute intermediate steps in case of (rare) faults

• Bottlenecks
 – Solution to problem designed around the shortcomings of the hardware
 – Why don’t we design the hardware around our problem?
 Remove bottlenecks, fine-tune relative speed of system components
 – «MinuteSort with Flat Datacenter Storage», MSR
 Disk reads can be a bottleneck as well → Design whole datacenter around it
 Overlap disk reads with asynchronous sorting-passes of already available data
 Unbeaten entry from 2012 for ‘Number of elements sorted in 60 seconds’
 www.sortbenchmark.org
That’s all, folks!

Questions & Comments?

Roger Wattenhofer