
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Parallel Computing
Part 2, Chapter 8

8/2

Overview

• Structure of a parallel computer

• Parallel Software for 16 cores (CPU)

• Parallel Software for 1,600 cores (GPU)

8/3

state updates

Programming Parallel Systems

• So far, we talked (mainly) about storage systems

– Main question: How can we guarantee a consistent
system state

• Already desktop systems can be used for parallel computation

– Distribute work load in the system!

– How can we do this?

– What’s underneath the hood?
job

j1 jm … j2

8/4

Programming Parallel Systems: Basic Idea

• Our model for parallel programming:

• A job is split into many small tasks

– These tasks can be executed in parallel

• The tasks can be distributed

– Each „worker thread“ may get many tasks

• The partial results may be merged

– This is just another kind of “task”

job

j1 jm … j2

…

r1 rm … r2

result

8/5

Programming Parallel Systems: Promise and Reality

Memory

Promise A Real Computer?

Processor 4

Processor 1

Processor 3

Processor 2

Memory/4 Memory/4

Memory/4 Memory/4

¿

Fast

Not so fast

8/6

Programming Parallel Systems: Promise and Reality

Memory

Promise A Real Processor

Proc. Core

Cache

Proc. Core

Cache

Memory/4

More
Processors …

… with
more

Memory
¿ Fast

Not so fast Slow

8/7

• Need to know your hardware for maximum efficiency

– Cache Sizes, Topology & Bandwidth of Buses

– Think: Data locality, (hidden!) communication cost

Programming Parallel Systems: Promise and Reality

Intel Processor

Memory/4

Memory

HT Core

Cache

HT Core

Cache

HT Core

Cache

HT Core

More
Processors…

… with more
Memory

Promise

8/8

Programming Parallel Systems: A To-Do List

• We need to

– write code for worker threads

– distribute the threads to the cores

– split the job into smaller tasks (how small?)

– assign tasks to threads

– balance the load on all threads

– collect the (partial) results from the machines

– assembly the results

• Should be fast as well, i.e., make use of locality

– cache locality and prefer local memory over remote memory!

• The complexity of the program increases significantly!!!

• Solution?

8/9

OpenMP

• OpenMP is a specification developed by AMD, Cray, IBM, Intel, NVIDIA, …

– Parallelization

– Load balancing

– Implicit use of locality

– If you know what you are doing

– All in one library!

• Not really a library, but a language-extension

– C, C++, Fortran (still used in scientific computing)

• Supports Basic Parallel Constructs

– Loops, basic reductions, tasks, …

– Synchronization

8/10

OpenMP: An Example

void parallel()
{
#pragma omp parallel for
 for (int i = 0; i < N; i++)
 a[i] *= b[i];
}

void sequential()
{
 for (int i = 0; i < N; i++)
 a[i] *= b[i];
}

• Split loop into tasks
• Distribute tasks to workers

std::vector<int> a(N);
std::vector<int> b(N);

a[i]*b[i]?

4 Procs x 4 Cores = 16 Threads
Speedup: 3.1x

Only 3.1x?

8/11

OpenMP: Under the Hood

void parallel()
{
#pragma omp parallel for
 for (int i = 0; i < N; i++)
 a[i] *= b[i];
}

0.. K.. 2K.. N-K..N Iteration of for-loop:

Where are the memory cells accessed in iteration i?

When a worker is free:
grab the next available task

(block of iterations)

…

8/12

OpenMP: Digging Deeper

• Physical memory location
 depends on Operating System

• Virtual Memory presented as continuous block

– Physical Memory may be scattered

– A single page of virtual/physical memory cannot be scattered

– Typical page sizes: 4KB, SuperPage: 4MB

• Many OSes

– Explicitly: Offer system call to pin a page to a physical processor by hand

– Implicitly: Pin virtual pages to processor that first accesses it

– How is this done?

std::vector<int> a(N);
std::vector<int> b(N);

8/13

OpenMP: Static Scheduling int *a, *b;

a = (int*)malloc(N*sizeof(int));
b = (int*)malloc(N*sizeof(int));

void fill()
{
#pragma omp parallel for schedule(static)
 for (int i = 0; i < N; ++i) {
 a[i] = a_value(i);
 b[i] = b_value(i);
 }
} Chunk x is assigned to thread x mod num_threads

void parallel()
{
#pragma omp parallel for schedule(static)
 for (int i = 0; i < N; ++i)
 a[i] *= b[i];
} 4 Procs x 4 Cores = 16 Threads

Speedup: 6.7x

Only 6.7x?

8/14

Not Every Parallel Program is a for-loop

• Barely scratched the surface of OpenMP

– Reductions
int sum = 0;

#pragma omp parallel for reduction(+:sum)
 for (int i = 0; i < N; i++) {

 sum += a[i] + b[i];

 }

8/15

Not Every Parallel Program is a for-loop

• Barely scratched the surface of OpenMP

– Reductions

– Arbitrary task types

cout<<"A ";

#pragma omp parallel
{

 #pragma omp single

 {
 #pragma omp task

 { cout<<"car "; }
 #pragma omp task

 { cout<<"race "; }

 }
}

cout<<endl;

A car race A car race
(or)

A race car

A race car car race
(or)

A car car race race
(or…)

8/16

Not Every Parallel Program is a for-loop

• Barely scratched the surface of OpenMP

– Reductions

– Arbitrary task types

– Synchronization primitives

cout<<"A ";

#pragma omp parallel
{

 #pragma omp single

 {
 #pragma omp task

 { cout<<"car "; }
 #pragma omp task

 { cout<<"race "; }

 #pragma omp taskwait
 cout<<"is fun to watch";

 }
}

cout<<endl;

A car race is fun to watch
(or)

A race car is fun to watch

8/17

Not Every Parallel Program is a for-loop

• Barely scratched the surface of OpenMP

– Reductions

– Arbitrary task types

– Synchronization primitives

– …

• Already a simple loop can be tricky

• Simple loops are everywhere!

– Think: Vectors, Matrix Multiplication

– Simple loops deserve their own hardware

8/18

Graphic Processing Unit (GPU)

• The complexity of the architecture increases further

• The GPU consists of compute units, each with multiple stream cores

– As an example, AMD Radeon R9 290X has 2816 stream cores

Compute unit Compute unit Compute unit . . .

8/19

The Real Deal

P
ro

g
ra

m
m

in
g

 G
u

id
e

A

M
D

 A
c
c
e

le
ra

te
d

 P
a

ra
ll
e

l P
ro

c
e

s
s
in

g

O
p

e
n

C
L

 T
M

8/20

Graphic Processing Unit (GPU)

• Different compute units can do different things

• All stream cores execute the same instruction sequence

– With separate local memories

• What is this good for?

Compute unit Compute unit

𝐴 + 𝐵

𝐴 + 𝐵

𝐴 + 𝐵

𝐴 + 𝐵

𝐷 ∗ 𝐶

𝐷 ∗ 𝐶 𝐷 ∗ 𝐶

𝐷 ∗ 𝐶

Stream cores Stream cores

8/21

Matrix Operations

• Matrix operations are the core of graphics
computations

• For example, matrix multiplication can be
highly parallelized

• Naive: 𝑂(𝑛3) multiplications

Core 𝑖

Core 𝑗

8/22

Matrix Multiplication

• Naive:
𝑂(𝑛3) multiplications

– Small rounding errors

• Better: Strassen

𝑂(𝑛2.807) multiplications

– Re-use partial results

– Can also be done in parallel

• Even better? Coppersmith-Winograd
𝑂 𝑛2.375477 multiplications

– Asymptotically better

– But not for practical matrix sizes

8/23

All-Pairs Shortest Path

• Some problems can be represented nicely by matrices

• Let 𝐺 = 𝑉, 𝐸 be a connected graph. The adjacency matrix 𝑀 of 𝐺 has a
1-entry on 𝑀(𝑢, 𝑣) if there is an edge between nodes 𝑢 and 𝑣

8/24

All-Pairs Shortest Path

• The adjacency matrix gives us all nodes at distance 1

• To get nodes at distance 2, multiply the adjacency matrix by itself

• 𝑀2
𝐴, 𝐹 = 𝑀 𝐴, 𝐴 𝑀 𝐴, 𝐹 + 𝑀 𝐴, 𝐵 𝑀 𝐵, 𝐹 + … + 𝑀 𝐴, 𝐹 𝑀 𝐹, 𝐹

 ≥ 1

8/25

Solving the All-Pairs Shortest Path Problem

• Similarly, get nodes at distance 3 by multiplying 𝑀2 by 𝑀:

 𝑀3 𝐴, 𝐼 = 𝑀2 𝐴, 𝐴 𝑀 𝐴, 𝐼 + 𝑀2 𝐴, 𝐹 𝑀 𝐹, 𝐼 + … ≥ 1

8/26

All-Pairs Shortest Path

• After 𝑖 multiplications, 𝑀 𝑢, 𝑣 ≠ 0 if there is a path of length at most
𝑖 + 1 from 𝑢 to 𝑣

• After 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 − 1 multiplications, we have found all nodes

• The length of the shortest path between any two nodes 𝑢 and 𝑣 is the
index of the step 𝑖 for which, 𝑀(𝑖 − 1) 𝑢, 𝑣 = 0 and 𝑀𝑖 𝑢, 𝑣 ≥ 1

– Write distances to output matrix 𝑄

• We can store the partial paths found in the intermediate steps

– get the actual shortest paths in the end

8/27

Conclusion

• OpenMP

– Widely used in scientific computing

– CPUs execute ‘real’ threads

– Don’t have to execute the same line of code everywhere

• GPUs have way more cores than CPUs

– Enables more parallelism

– Cores execute the same instruction per clock cycle

– Efficient for matrix operations

– Can be programmed using

– OpenCL

– CUDA

– possibly OpenMP in the future

8/28

Outlook

• Faults

– OpenMP, OpenCL, CUDA don’t care about faults

– Hadoop/MapReduce: Store all intermediate steps, for fault-tolerance

– Apache Spark: Recompute intermediate steps in case of (rare) faults

• Bottlenecks

– Solution to problem designed around the shortcomings of the hardware

– Why don’t we design the hardware around our problem?
Remove bottlenecks, fine-tune relative speed of system components

– «MinuteSort with Flat Datacenter Storage», MSR
Disk reads can be a bottleneck as well → Design whole datacenter around it
Overlap disk reads with asynchronous sorting-passes of already available data
Unbeaten entry from 2012 for ‘Number of elements sorted in 60 seconds’
www.sortbenchmark.org

8/29 ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

That’s all, folks!
Questions & Comments?

