Parallel Computing

Part 2, Chapter 8

by

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

Overview

e Structure of a parallel computer
e Parallel Software for 16 cores (CPU)
e Parallel Software for 1,600 cores (GPU)

Programming Parallel Systems

state updates
e Sofar, we talked (mainly) about storage systems

— Main question: How can we guarantee a consistent
system state

e Already desktop systems can be used for parallel computation
— Distribute work load in the system!

_ ic?
How can we do this: %
— What’sunderneath the hood?

jl j2 ces jm

Programming Parallel Systems: Basic Idea

e Our model for parallel programming:

e Ajob issplitinto many small tasks
— These tasks can be executed in parallel

e The tasks can be distributed
— Each ,worker thread” may get many tasks

e The partial results may be merged
— Thisisjust another kind of “task”

Jm

Programming Parallel Systems: Promise and Reality

Promise A Real Computer?

Not so fast

8/5

Programming Parallel Systems: Promise and Reality

Promise A Real Processor

Fast

P\

y

More
Processors ...

... with
more

Q Memory

Not so fast Slow

8/6

Programming Parallel Systems: Promise and Reality

Promise Intel Processor

2484 More
Processors...
_ ... with more
[Memory/4] Memory

e Need to know your hardware for maximum efficiency
— Cache Sizes, Topology & Bandwidth of Buses
— Think: Data locality, (hidden!) communication cost

Programming Parallel Systems: A To-Do List

e We need to
— write code for worker threads
— distribute the threads to the cores
— splitthe job into smaller tasks (how small?)
— assign tasks to threads
— balance the load on all threads
— collect the (partial) results from the machines
— assembly the results

e Should be fast as well, i.e., make use of locality
— cache locality and prefer local memory over remote memory!

e The complexity of the program increases significantly!!!

e Solution?

OpenMP

e OpenMP is a specification developed by AMD, Cray, IBM, Intel, NVIDIA, ...
— Parallelization
— Load balancing

— Implicit use of locality P
— If you know what you are doing Pen M N

— Allin one library!

e Not really a library, but a language-extension
— C, C++, Fortran (still used in scientific computing)

e Supports Basic Parallel Constructs
— Loops, basic reductions, tasks, ...
— Synchronization

OpenMP: An Example : :
ali]*b[i]7

std::vector<int> a(N);

std::vector<int> b(N);

void sequential ()

{
for (int i = 0; 1 < N; i++)
ali] *= b[il;

void parallel Q)

* Split loop into tasks { el f
* Distribute tasks to workers #pragma_omp_par'a € or
for (int i = 0; i < N; i++)
alil *= b[il;

4 Procs x 4 Cores = 16 Threads
Speedup: 3.1x

Only 3.1x?

OpenMP: Under the Hood

void parallel Q)
{

#pragma omp parallel for When a worker is free:
for (int 1 =0; 1 < N; 1++)

So : grab the next available task
) 2] 7= Bl (block of iterations)

Iteration of for-loop:

Where are the memory cells accessed in iterationi?

OpenMP: Digging Deeper

e Physical memory location std::vector<int> a(N);
depends on Operating System std::vector<int> b(N);

e Virtual Memory presented as continuous block
— Physical Memory may be scattered

— Asingle page of virtual/physical memory cannot be scattered
— Typical page sizes: 4KB, SuperPage: 4MB

e Many OSes

— Explicitly: Offer system call to pin a page to a physical processor by hand
— Implicitly: Pin virtual pages to processor that first accesses it
— How s this done?

OpenMP: Static Scheduling int *a, *b;

a (int*)malloc(N*sizeof(int));
b (int*)malloc(N*sizeof(int));

void fil110)
{

#pragma omp parallel for schedule(static)
for (int 1 =0; 1 < N; ++1) {
a[il] a_value(1);
b[i] b_value(i);
}

1 Chunk x is assigned to thread x mod num_threads

void parallel ()
{

#pragma omp parallel for schedule(static)
for (int i = 0; 1 < Nj; ++1)
ali] *= blil;
} 4 Procs x 4 Cores = 16 Threads
Speedup: 6.7x

Only 6.7x?

Not Every Parallel Program is a for-loop

e Barely scratched the surface of OpenMP

— Reductions
int sum = O;
#pragma omp parallel for reduction(+:sum)
for (int 1 = 0; 1 < N; i++) {
sum += al[i] + b[i];

}

Not Every Parallel Program is a for-loop

e Barely scratched the surface of OpenMP

— Reductions
— Arbitrary task types Cout<<"A ";
Y P #pragma omp parallel
{
#pragma omp single
{
#pragma omp task
{ cout<<"car "; }
#pragma omp task
{ cout<<"race "; }
}
A race car car race }
(or) cout<<endl;

A car car race race
(or...)

Not Every Parallel Program is a for-loop

e Barely scratched the surface of OpenMP

— Reductions

cout<<"A ";

o o #pragma omp parallel
— Synchronization primitives {

— Arbitrary task types

#pragma omp single
{
#pragma omp task

{ cout<<""car "; }
#pragma omp task

{ cout<<"race "; }
#pragma omp taskwait

cout<<"is fun to watch";

}
}

cout<<endl;

A car race is fun to watch
(or)
A race car is fun to watch

Not Every Parallel Program is a for-loop

e Barely scratched the surface of OpenMP
— Reductions
— Arbitrary task types
— Synchronization primitives

e Already a simple loop can be tricky

e Simple loops are everywhere!
— Think: Vectors, Matrix Multiplication
— Simple loops deserve their own hardware

Graphic Processing Unit (GPU)

e The complexity of the architecture increases further

e The GPU consists of compute units, each with multiple stream cores
— As an example, AMD Radeon R9 290X has 2816 stream cores

The Real Deal

CuU CuU CuU CuU Cu CuU Cu Cu
16 pe 16 pe 16 pe 16 pe e e e 16 pe 16 pe 16 pe 16 pe
LDS LDS LDS LDS LDS LDS LDS LDS

Complete
Path
Atomics

FastPath

Memory Channel

. /
Channel
((Address / 256) % n) ==

Complete
Path
Atomics

FastPath

Memory Channel

A A

Compute Unit <> Memory Channel Xbar

\
J

7

Channel

((Address / 256) % n) ==

Complete
Path
Atomics

FastPath

Memory Channel

. /

Channel

((Address / 256) % n) == n-2

((Address / 256) % n) == n-1

Complete
Path
Atomics

FastPath

Memory Channel

7

Channel

AMD Accelerated Parallel Processing

Programming Guide
OpenCLTM

8/19

Graphic Processing Unit (GPU)

Different compute units can do different things

All stream cores execute the same instruction sequence

— With separate local memories

A+B

A+B

A+B A+B

Stream cores

What is this good for?

D x(C D xC
D xC D xC

Stream cores

Matrix Operations

e Matrix operations are the core of graphics

computations

e For example, matrix multiplication can be

highly parallelized

e Naive: 0(n®) multiplications

" @
¥ s
971014111510
9111311114
11041607
2117070070
0/0[0]1]0]0
O/0(1]1]1]0

91014111510
9111311114
Corei +—+6+4+6+0++% >\
211107010710
Core j O0—+0—0+1+10+90
O10 (1]11]11]0

Matrix Multiplication

e Naive:
0 (n®) multiplications
— Small rounding errors

o Better: Strassen
2.807 IR TR
O(n) multiplications
— Re-use partial results
— Canalso be donein parallel

e Even better? Coppersmith-Winograd
0 (n?37>477) multiplications

— Asymptotically better

— But not for practical matrix sizes

All-Pairs Shortest Path

e Some problems can be represented nicely by matrices

e LetG = (V,E) be aconnected graph. The adjacency matrix M of G has a
1-entry on M (u, v) if there is an edge between nodes u and v

“=TODoOEEHOQW =

DO OO O~ O
oo oo RO~ ORI
DO OO OO R, R OFR KO
coocor~RrCocOoR~~=Ood
co~R oo Cc oo o™
O = = OOk O O|H
H =, O, OO0 OoOCoOf
_—FoOOoORR—ROOOOoO MO
OO, R OCOOO O

O R PP, PP OO oo

All-Pairs Shortest Path

e The adjacency matrix gives us all nodes at distance 1

e To get nodes at distance 2, multiply the adjacency matrix by itself

e M2(AF) = M(AAMAF)+ M(A BM(B,F) + ..+ M(A F)M(F,F)
>1

Solving the All-Pairs Shortest Path Problem

e Similarly, get nodes at distance 3 by multiplying M? by M:
M3(A, 1) = M?(A,A)M(A,I) + M*(A,F)M(F,]) + ... =1

All-Pairs Shortest Path

e After i multiplications, M (u, v) # 0 if there is a path of length at most
I+ 1fromutov

o After diameter(G) — 1 multiplications, we have found all nodes

e The length of the shortest path between any two nodes u and v is the
index of the step i for which, MG~ 1 (y,v) = 0and Mi (u,v) > 1
— Write distances to output matrix Q

e \We can store the partial paths found in the intermediate steps
— get the actual shortest pathsin the end

Conclusion

e OpenMP
— Widely used in scientific computing
— CPUs execute ‘real’ threads

— Don’t have to execute the same line of code everywhere

e GPUs have way more cores than CPUs
— Enables more parallelism
— Cores execute the same instruction per clock cycle
— Efficient for matrix operations
— Can be programmed using
— OpenCL

— CUDA
— possibly OpenMP in the future

Outlook

e Faults

— OpenMP, OpenCL, CUDA don’t care about faults
— Hadoop/MapReduce: Store all intermediate steps, for fault-tolerance
— Apache Spark: Recompute intermediate steps in case of (rare) faults

e Bottlenecks

— Solutionto problem designed around the shortcomings of the hardware

— Why don’t we design the hardware around our problem?
Remove bottlenecks, fine-tune relative speed of system components

— «MinuteSort with Flat Datacenter Storage», MSR
Disk reads can be a bottleneck as well - Design whole datacenteraround it
Overlap disk reads with asynchronous sorting-passes of already available data

Unbeaten entry from 2012 for ‘Number of elements sorted in 60 seconds’
www.sortbenchmark.org

That’s all, folks!

Questions & Comments?

by

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

