
Distributed
 Computing

HS 2014 Prof. R. Wattenhofer / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems
Solution to Exercise Sheet 12

1 PhD-Scheduling

a) (i) SmallLoad distributes the tasks as follows:

PhD student 1: 2 4 7

PhD student 2: 5 3

Opt uses the following distribution (or another one with the same cost):

PhD student 1: 2 5 3

PhD student 2: 4 7

SmallLoad thus distributes the tasks with cost Alg(σ) = 13 while Opt incurs a
cost of Opt(σ) = 11. Hence,

ρ(σ) =
Alg(σ)

Opt(σ)
=

13

11
.

(ii) The following sequence results in a larger competitive ratio: σ = 1, 1, 2. We have
Alg(σ) = 3 and Opt(σ) = 2 and thus

ρ(σ) =
Alg(σ)

Opt(σ)
=

3

2
.

(iii) See b).

(iv) No, finding the optimal solution offline corresponds to solving the Partition-problem,
which is NP-complete, thus presumably no efficient algorithm exists for the problem.

b) We first show a lower bound of (2 − 1
m) on the competitive ratio of SmallLoad. To this

end, we choose an input sequence that consists of m(m− 1) tasks of size 1 concluded with
a task of size m, i.e. σ = 1, . . . , 1︸ ︷︷ ︸

m(m−1)

,m. After assigning the first m(m−1) tasks, SmallLoad

has assigned m− 1 units to each of the m PhD students. The last task of size m incurs a
load of 2m− 1 for the student to whom it is assigned.

The optimal algorithm assigns the first m(m− 1) taks to only m− 1 students and the last
(heavy) task to the remaining student. This results in a maximal load of m and we get the
following lower bound for the competitive ratio:

c ≥ Alg(σ)

Opt(σ)
=

2m− 1

m
= 2 − 1

m

Now we shall show a matching upper bound for the competitive ratio. Let σ = (e1, e2, . . .)
be an arbitrary input sequence. Without loss of generality, we assume s1 to be the student

with the maximal load for σ. Furthermore, let w be the effort of the last task T assigned
s1 and E the load of s1 before assigning its last task. The load of all other students must
be at least E since s1 was the student with minimal load when he was assigned task T
(otherwise another student would have received T). Hence, the sum of the loads of all
students is at least m · E + w and hence

Opt(σ) ≥ m · E + w

m
= E +

w

m
.

Using Opt(σ) ≥ w, we get

Alg(σ) = w + E

≤ w + Opt(σ) − w

m

= Opt(σ) +

(
1 − 1

m

)
w

≤ Opt(σ) +

(
1 − 1

m

)
Opt(σ)

=

(
2 − 1

m

)
Opt(σ)

2 The Winter Train Problem

We can model each train individually and combine the corresponding sub-states using an AND-
super-state, see the figure below. Additionally, in order to “synchronize” the trains, a third
sub-state is needed (shown in the middle) which implements a mutual exclusion: For instance,
if there is no train between Stans and Engelberg and if train 1 is in state c1, T1 can enter
the critical section and train 2 has to wait. (Notice that if both trains are in states c1 and c2
respectively, T1 has priority.)

• The trains start at their states m1 and m2. When m1 (m2) is pressed, then train 1 (2)
moves to the right in n1 (n2), until it reaches the switch, where it stops in state o1 (o2).

2

• Now the ”middle”-state can change its state to either y or z, depending on which train got
there first. If train 1 (2) arrives first, then the state is changed to y (z) and train 1 (2) can
move to state p1 (p2) while moving right.

• After arriving at the station Engelberg, the train waits for 100s, then moves to the left and
switches to state q1 (q2) – until it hits the switch at b1 (b0), upon which the ”middle”-state
can change again – and the train continues to its original station, where it stops.

Positions of the trains (train 1 ; train 2):

• m1: Lucerne ; m2: Sarnen

• n1: Between Lucerne and the switch ; n2: Between Sarnen and the switch

• o1: At the left side of the switch ; o2: At the left side of the switch

• p1: Between the switch and Engelberg ; p2: Between the switch and Engelberg

• q1: Between Engelberg and the switch ; q2: Between Engelberg and the switch

• r1: Between the switch and Lucerne ; r2: Between the switch and Sarnen

3

