
Distributed
 Computing

HS 2014 Prof. R. Wattenhofer / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems
Solution to Exercise Sheet 3

1 Pumping Lemma [Exam]

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length
p. Construct a suitable word w ∈ L with |w| ≥ p (“there exists w ∈ L”) and show that for
all divisions of w into three parts, w = xyz, with |x| ≥ 0, |y| ≥ 1, and |xy| ≤ p, there exists
a pumping exponent i ≥ 0 such that w′ = xyiz /∈ L. If this is the case, L is not regular.

a) Language L1 can be shown to be non-regular using the pumping lemma. Assume for
contradiction that L1 is regular and let p be the corresponding pumping length. Choose w
to be the word 0110p1p. Because w is an element of L1 and has length more than p, the
pumping lemma guarantees that w can be split into three parts, w = xyz, where |xy| ≤ p
and for any i ≥ 0, we have xyiz ∈ L1. In order to obtain the contradiction, we must prove
that for every possible partition into three parts w = xyz where |xy| ≤ p, the word w
cannot be pumped. We therefore consider the various cases.

(1) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping
with i = 0) creates a word with an illegal prefix (e.g. 1 0p 1p for y = 01).

(2) If y consists of only 0s from the second block, the word w′ = xy2z has more 0s than
1s in the last |w′| − 3 symbols and hence c 6= d.

Note that y cannot contain 1s from the second block because of the requirement |xy| ≤ p.

We have shown that for all possible divisions of w into three parts, the pumped word is
not in L1. Therefore, L1 cannot be regular and we have a contradiction.

b) With the adapted language L2, the proof of non-regularity is much more tricky! Specifically,
non-regularity of L2 cannot be proven using the pumping lemma, because any word in L2

can actually be pumped! Consider for instance a word w of the form 0110p1p. In this case,
we can split w into the three parts x = 0, y = 11, z = 0p1p, which is in accordance with the
rules of the pumping lemma. It can be seen, however, that any word xyiz is also in L2!
That is, the language L2 can be pumped and yet, it is not regular as shown below.

Assume for contradiction that there exists a finite automaton A which accepts the language
L2. Every word that starts with the input-sequence 0110 is only accepted if the remainder
of the word has the form 0c−11c for some integer c > 0. Let q1 be the state reached after
the input 0110. Given the automaton A, we can construct a regular automaton A′ that is
equivalent to A with the only difference that its initial state is q1. By the definition of A,
this adapted finite automaton A′ accepts all words of the form 0c−1dc. However, as shown
on slide 1/95 of the script, the language 0c−1dc is not regular. Hence, A′ and thus A cannot
be finite automata. Because there exists a finite automaton for every regular language, it
follows that L2 cannot be regular. Language L2 shows that while every regular language

can be pumped according to the pumping lemma, there are also non-regular languages that
can be pumped.

Variant: We can alternatively use the fact that if two languages L and L′ are regular, the
language defined by the intersection of the two languages L ∩ L′ is regular as well (cf. p.
1/41). Consider the regular language L3 = {w ∈ 0110∗1∗}. Notice that the intersection of
L3 with L2 = {0a1b0c1d | a, b, c, d ≥ 0 and if a = 1 and b = 2 then c = d} contains exactly
all words w ∈ {0110n1n | n ≥ 0}. This, however, is the exact language L1 we proved not
to be regular in the first part of this exercise. If we assume L2 to be regular, L1 must be
regular as well, since L1 = L2 ∩ L3. This is a contradiction. Thus L2 cannot be regular.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only
works in the direction presented. That is, for an operator � ∈ {∪,∩, •}, we have:

If L1 and L2 are regular, then L = L1 � L2 is also regular.

If either L1 or L2 or both are non-regular, we cannot deduce the non-regularity of L or
vice-versa. Moreover, L being regular does not imply that L1 and L2 are regular as well.
This may sound counter-intuitive which is why we give examples for the three operators.

• L = L1 ∪ L2: Let L1 be any non-regular language and L2 its complement. Then
L = Σ∗ is regular.

• L = L1∩L2: Let L1 be any non-regular language and L2 its complement. Then L = ∅
is regular.

• L = L1 • L2: Let L1 = {a∗} (a regular language) and L2 = {ap | p is prime} (a
non-regular language) then L = {aaa∗} is regular.

Hence, to prove that a language Lx is non-regular, you assume it to be regular for contra-
diction. Then you combine it with a regular language Lr to obtain a language L = Lx �Lr.
If L is non-regular, Lx could not have been regular either.

2 Deterministic Finite Automata [Exam]

We could use the systematic transformation scheme presented in the lecture (slide 1/75). Con-
sidering the large number of states, however, this will easily lead to an explosion of states in
the derandomized automaton. Hence, we build the deterministic finite automaton in a step-wise
manner, only creating those states that are actually required: Initially, the automaton requires a
0. Subsequently, only a 1 is accepted. Including the various transitions, this 1 can lead to three
different states, namely states 2, 3, and 4.

{1} {2, 4} {2, 3, 4}0 1

In any of the states 2, 3, and 4, only a 1 is accepted. Assume that the automaton is currently
in state 2, this 1 can lead to states {2, 3, 4} when including all ε-transitions. When in state 3,
the 1 leads to states {2, 3, 4, 5} and finally, when being in state 4, the reachable states given
a 1 are {2, 3, 4}. Hence, a 1 leads from state {2, 3, 4} to state {2, 3, 4, 5}. Repeating the same
process for state {2, 3, 4, 5}, we can see that, again, only a 1 is accepted, which leads to state
{2, 3, 4, 5, 6}. Because the state 6 in the original NFA was an accepting state, {2, 3, 4, 5, 6} is also
accepting in the DFA. From state {2, 3, 4, 5, 6}, an additional 1 will lead to another accepting
state {1, 2, 3, 4, 5, 6}. And from this state, any subsequent 1 returns to state {1, 2, 3, 4, 5, 6} as
well.

2

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

0 1 1 1 1
1

What happens if a 0 occurs in the input? This is feasible only when the deterministic state
includes either state 1 or state 6. In state {2, 3, 4, 5, 6}, a 0 necessarily leads to state {4}, whereas
in state {1, 2, 3, 4, 5, 6} a 0 leads to state {2, 4}. In both of these states, the only acceptable input
symbol is a 1 and leads to the state {2, 3, 4}. Hence, the deterministic finite automaton looks
like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

{4}

0 1 1 1 1

0

1

1

0

It can easily be seen, that first the states {4}, {2, 4} and then the states {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}
can be merged and hence, the automaton can be reduced to the one shown in the next figure.

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

0 1 1 1
1

0

This is not a DFA yet, because the crash state is still missing. The final deterministic automaton
looks like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

A

0

1

1

0

1

0

1

0

1

0

0,1

3 Transforming Automata [Exam]

The regular expression can be obtained from the finite automaton using the transformation
presented in the script on slide 1/85. After ripping out state q2, the corresponding GNFA looks
like this:

s q1 q3 a
ε

1

01∗0

ε

11∗0

0

3

After also removing state q1, the GNFA looks as follows.

s q3 a
(01∗0)∗1 ε

0 ∪ 11∗0(01∗0)∗1

Eliminating the last state q3 yields the final solution, which is (01∗0)∗1(0 ∪ 11∗0(01∗0)∗1)∗.

Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular
expression. The order q3, q2, q1, for example, results in ((0 ∪ 10∗1)1∗0)∗10∗.

4 Regular and Context-Free Languages

a) Sometimes, even simple grammars can produce tricky languages. We can interpret the 1s
and 2s of the second production rule as opening and closing brackets. Hence, L(G) consists
of all correct bracket terms where at least one 0 must be in each bracket.

Choose w = 1p02p ∈ L(G). Let w = xyz with |xy| ≤ p and |y| ≥ 1 (pumping lemma).
Because of |xy| ≤ p, xy can only consist of 1s. According to the pumping lemma, we should
have xyiz ∈ L for all i ≥ 0. However, by choosing i = 0 we delete at least one 1 and get a
word w′ = 1p−|y|02p with |y| ≥ 1. w′ is not in L since it has fewer 1s than 2s. This means
that w is not pumpable and hence, L(G) is not regular.

b) Since every regular language is also context-free, we can choose an arbitrary regular lan-
guage. For example, we can choose the language L = {0n1, n ≥ 1} which is clearly regular.
A context-free grammar for this language uses only the production S → 0S | 1.

5 Context-Free Grammars

a) An example for a grammar G producing the language L1 is G = (V,Σ, R, S) with

V = {X,A},
Σ = {0, 1},

R =

{
X → XAX | A,

A→ 0 | 1

}
,

S = X

Note: The language is regular!

b) A rather natural grammar generating L2 uses the following productions:

S → A1A

A→ A1 | 1A | A01 | 0A1 | 01A | A10 | 1A0 | 10A | ε

Another slightly more complicated solution yielding simpler productions looks as follows:

S → A1A

A→ AA | 1A0 | 0A1 | 1 | ε

The idea of both grammars is to first ensure that there is at least one 1 more and then
have a production that generates all possible strings with the same number of 0s and 1s or
further 1s at arbitrary places.

4

6 Pushdown Automata

a) ε, 0, 00, (), (0), 0(), ()0, 000

b) It is ambiguous, because the word 00 has two different leftmost derivations.

S → SA

→ A

→ AA

→ 0A

→ 00

S → SA

→ SAA

→ AA

→ 0A

→ 00

It can also be seen by taking a look at these two derivation trees that both belong to the
word 00:

S

S A

ε A A

0 0

S

S A

S A 0

ε 0

Because the two derivation trees are structurewise different, the word 00 can be derived
ambiguously from G.

Ambiguity of Grammars

Definition: A string s is derived ambiguously in a context-free grammar G if it has
two or more different leftmost/rightmost derivations (or two structurewise different
derivation trees). Grammar G is ambiguous if it generates some string ambiguously.

A leftmost/rightmost derivation replaces in every step the leftmost/rightmost variable.

Example: The grammar with the productions ‘S → S · S | S + S | a’ is ambiguous
since the string s = a · a + a has two different leftmost derivations.

S → S · S
→ a · S
→ a · S + S

→ a · a + S

→ a · a + a

S → S + S

→ S · S + S

→ a · S + S

→ a · a + S

→ a · a + a

Intuitively, the derivation on the left corresponds to the arithmetic expression a·(a+a)
because we first derive a product and then substitute one factor by a sum while the
derivation on the right corresponds to (a ·a) +a because we first have a sum and then
substitute one summand by a product.

The productions of an equivalent non-ambiguous grammar are A→ S + a | S · a | a.

5

c) A simple non-deterministic PDA for L(G) looks as follows:

ε, ε→ $

0, ε→ ε

(, ε→ (

), (→ ε

ε, $→ ε

Deterministic PDAs

A push-down automaton M is deterministic iff in each state, there is exactly one
successor state for every combination (a, b) ∈ Σ × Γ where Σ is the string input
alphabet and Γ is the stack alphabet. Note that if a state q has only one outgoing
transition ‘ε, ε→ $’ the PDA is still deterministic since there is no ambiguity of what
the successor state of q will be. If a state q, however, has two outgoing transitions,
‘a, ε → x’ and ‘ε, b → y’ leading into different states, it is unclear which transition
the system should take if the string input in state q is ‘a’ and the top element on the
stack is ‘b’. A PDA containing such ambiguous transisitions is not deterministic.
Unlike in deterministic finite automata, we take the liberty of omitting transitions
leading to an (imaginary) fail state as well as the fail state itself when drawing deter-
ministic PDAs.

Considering this, the PDA given above is not deterministic: From the middle state, there
are two transitions ‘(, ε→ (’ and ‘ε, $→ ε’, such that we do not know which one to take if
we read a ‘(’ while the top element on the stack is ‘$’. We can overcome this problem in
different ways.

If we assume that our PDA recognizes the end of the input string (denoted by ‘−’), it is
easy to transform the non-deterministic PDA above into a deterministic one:

ε, ε→ $

0, ε→ ε

(, ε→ (

), (→ ε

−, $→ ε

If we assume that the PDA is not able to determine the end of the input, it is not that
easy to derive the deterministic PDA from the non-deterministic one.

An example of a deterministic PDA accepting L(G) is the following:

ε, ε→ $

0, ε→ ε
(, ε→ (

0, ε→ ε

(, ε→ (

), (→ εε, (→ (

ε, $→ $

6

The deterministic PDA using as few states as possible is the following:

0, ε→ ε (, ε→ # 0, ε→ ε

(, ε→ (

), (→ ε

),#→ ε

7

