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1 Night Watch

a) Observe that the problem is symmetric, e.g., from all four corners, the situation looks the

b)

same, and the probability of being in a specific corner room is the same for all corners. The
same holds for rooms at the border and for rooms in the middle. Thus, instead of using 16
states, we consider the following simplified Markov chain consisting of three states only:

1 1/3
edge 1/2
1/3 1/2

1/3

The transition matrix M is given as follows.

0o 1 0
M=|1Y3 1/3 1/3
0 2 1)

To calculate the steady state probability, we have to calculate the eigenvector of M to the
eigenvalue 1, that is solve the equation

v-M=wv

for v (Be careful to multiply M from the right side). Intuitively this means that if we have
a state distribution v and applying the transition matrix does not change this distribution
v, then v is the steady state distribution.

For v = (¢,e,m), we get the following system of linear equations from the above equation.

1 1 1
c=—e e=—-e4+-—m-+c

3 3 2 l=c+e+m

Solving this equation system gives: ¢ = 1/6. The probability of being in a specific corner is
therefore 1/6 - 1/4 = 1/24.

Since the two walks are independent, we have — according to the inclusion-exclusion prin-
ciple (Einschluss-Ausschluss-Verfahren) —
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Hitting Time of a Simple Random Walk

Consider the line graph of three nodes u, v, w with edges {u,v} and {v,w}. In this graph
hyy = 1, but Ay, > 1.

Two simple families of graphs that satisfy h,, = hy, due to their inherent symmetry are
ring graphs and complete graphs.

Intuitively speaking, if the graph “looks the same” from the view of two nodes u and v,
then the hitting time will satisfy hy, = hyy. To put it more formally, the hitting time for
two nodes is symmetric, if there exists a graph automorphism® ¢ : V(G) — V(G) which
satisfies ¢(v) = u and ¢(u) = v.

It is important to notice that it is not sufficient that the graph is regular. To understand
this, consider the following 3-regular graph and the edge (u,v).

To calculate the hitting times h,, and h,,, we first convert it to a simplied Markov chain
by merging equivalent states as indicated by the dashed ellipses and name them according
to the numbers above. We obtain the following Markov chain.
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1/3
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After observing that the hitting times h,, and h,, in this simplied Markov chain are
identical to the ones in the original graph, we calculate hy, = 21 and h,, = 15. An
intuitive argument why it takes longer to get from u to v than vice versa is that if the
walker takes a wrong turn, it spends more time in the larger graph on the left than in the
smaller one on the right.

You might wonder why one needs such a large graph to show a rather trivial argument.
However, this is the smallest graph that we could come up with. If you know one with
fewer nodes/edges, we would be happy to learn about it.

The Knight and the Bunny

As noted in the exercise, we create a Markov chain MC with n? states of the form (k,b)
for all possible choices of k and b from V. Let N (k) be the set of neighbors of k in G and
N (b) be the set of neighbors of b in G. Then a node (k,b) is connected to |N (k)| - |N(b)]
nodes in the Markov chain. What is the number of edges E(MC) in MC? It holds that

1An automorphism ¢ of a graph G is a permutation of the graph’s vertices that “respects the structure” of G,
that is, if {u,v} is an edge in G, then {¢(u), ¢(v)} is also an edge.
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the sum of all neighbors of all nodes in M C' (note: We count each edge twice now!) can
be expressed as (see the definition above):

2IEMC\—ZZIN %)) I—ZZIN 7l (1)

We can now take this finite sum apart for the following insight of 2|E(MC)| = 4m?:
YD IN@I-ING) =Y ING) ZIN )| = 2m - 2m = 4m? )
i J i

Let u = (iy, ju) and v = (4, J») be nodes in MC. According to the lecture (see the slide
”Cover Time von Random Walks”), it holds that h,, < 2|E(MC)| if the edge (u,v) exists.
Therefore

huw < 2|B(MC)| < 4m? . (3)

To show the upper bound, we now need to show that for any node (i, j) there exists a path
of length at most 3n to a node where the Bunny kills the Knight, i.e., a node of the form
(v,v). We now show that such a path exists between any (4, j) and the corresponding (7, j):

e The Bunny at j can always go back to the node j in two steps (the graph is undirected!)
e Since the graph G is connected, there is a path P of length p < n from ¢ to j in G.

— If p is even, then the Knight will run into the Bunny on node j.

— If p is odd, then the Knight will miss the Bunny on node j.

— But the graph contains an odd cycle, meaning that if p is odd, then the Knight
could travel to this cycle, use it, and then go to node j - which makes the number
of edges traversed even (and the Knight could meet his fate)! We can bound the
number of traversed edges from above with 3n in this case.

e Each edge on the path requires at most 4m? steps, giving therefore the desired upper

bound of 12 - n - m?2.



