
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Chapter 3

SPECIFICATION MODELS

Overview

• StateCharts

– Hierarchy

– Concurrency

– Events and Actions

– Simulation Semantics

– Non-Determinism and Conflicts

• Petri Nets

– Notation

– Concurrency

– Petri Net Languages

– Behavioral Properties

– Analysis

3/2

StateCharts

• Deficits of finite automata for modeling:

– Only one sequential process, no concurrency

– No hierarchical structuring capabilities

• Extension Statecharts:

– Model of David Harel [1987]

– StateCharts introduces hierarchy, concurrency and computation

– Model is used in many tools for the specification, analysis and simulation of

discrete event systems, e.g. Matlab-Stateflow, UML, Rhapsody, Magnum

– Complicated semantics: We will only cover some basic mechanisms.

3/3

Introducing Hierarchy

FSM is in exactly one of the

sub states of S if S is active

(either in A xor B xor …)

3/4

A B C D E

F

f

g h i j

k
kkk

k

m

A B C D E

F

f

g h i j

m

S

k

super-state

sub states

Definitions

A super-state S is called OR-super-state, if exactly one of its sub states is
active when S is active.

3/5

A B C D E

F

f

g h i j

m

S

k

A B C D E

F

f

g h i j

m

S

k

equivalent

• Current states of FSMs are called active states

• States which are not composed of other states are called basic

• States containing other states are called super states

• For each basic state s, the super-states containing s are called

ancestor states

Introducing Concurrency

A super-state S is called AND-super-state, if all (immediate) sub-states are

active when S is active.

3/6

OFF

Line monitoring

answering machine

ring

ON

hang-up

(caller)

Key monitoring (excl. ON / OFF)

Key

wait

Key

Process
done

key pressed

Line

wait

Line

Process

key-OFF key-ON

Entering and leaving AND-Super-States

New: on / off events handled by key process.

3/7

OFF

Line monitoring

answering machine

ring

ON

hang-up

(caller)

Key monitoring (incl. ON / OFF)

Key

wait

Key

Process
done

key pressed

Line

wait

Line

Process

k
e
y
-O

F
F

k
e
y
-O

N
Representation of Computations

• Besides states, arbitrary many other variables can be defined.

This way, not all states of the system are modeled explicitly.

• The variables can be changed as a result of a state transaction

(“action”). State transitions can be dependent on these variables

(“conditions”).

3/8

variables

action

condition

General form of edge labels

Event

Can be either internally or externally generated.

Condition

Refer to values of variables that keep their value until they are

reassigned.

State transition

Transition is enabled if event exists and condition holds

Reaction / Action

Can be assignment to variables and/or creation of events

3/9

BA
event [condition] / reaction

Events and Actions

• An event can be composed of several events:

(e1 and e2) event that corresponds to the simultaneous

occurrence of e1 and e2.

(e1 or e2) event that corresponds to the occurrence of either

e1 or e2 or both.

(not e) event that corresponds to the absence of event e.

• Similarly for conditions

• A reaction can also be composed:

(a1; a2) actions a1 und a2 are executed sequentially.

• All events, states and actions are globally visible.

3/10

BA
event [condition] / reaction

Example

3/11

e:

a1:

a2:

c:

e:

a1:

a2:

c:

true

false

true

false

e / a1 [c] / a2

time

The StateCharts Simulation Phases

• The transitions are evaluated in simulation steps.

• Each step is divided in three phases:

1. Effect of changes on events and conditions is evaluated.

2. The set of transitions to be made in the current step and

right hand sides of assignments are computed.

3. Transitions become effective, variables obtain new values.

3/12

BA
event [condition] / reaction

Example – Swap

• In phase 2, variables a and b are assigned to temporary

variables

• In phase 3, these are assigned to b and a, respectively

• As a result, variables a and b are swapped

3/13

swap

A

e / a:=b

B

e / b:=a

/ a:=1; b:=0

More on semantics of StateCharts

• Unfortunately, there are several time-semantics of StateCharts in use.

This is one possibility:

– A step is executed in arbitrarily small time.

– Internal (generated) events exist only within the next step.

– External events can only be detected after a stable state has been

reached.

3/14

external events

steptransport of internal events

stable

state
stable

state
t

state

transitions

Example, Stable State and State Diagram

3/15

A1 B1

B2A2

a/a’ c/c’

A1 B1

B2A2

a b/a

Corresponding state diagrams:

A1,B1

A2,B1 A1,B2

A2,B2

ac/a’ ac/c’

ac/a’c’

c/c’ a/a’

A1,B1

A2,B1 A1,B2

A2,B2

ba/aab

ab/a

b/a a

unstable state

Example – Non-Determinism

3/16

State Diagram

Which one

is chosen?

A C
a

B D
a

F H

E G
e

e

Conflicts – OR or XOR?

3/17

bc

A

B

b

C

c What if the events b and c

occur simultaneously?

A

B

bc

C

bc

XOR

A

B

b

C

bc

XOR’

(with priority to b if

simultaneous events)

A

B C

bc

OR

bc

B C

Real Time Exercise – Reservoir

• Initial Condition

– Empty pools, faucets closed

• Sensors & regulators

– Fi, Gi = 0 if closed

– Hi, Li = 1 if water is above sensor

• Operation

After pressing button m, the pools are

filled up to level Hi. When pool i has

reached Hi, close Fi and open Gi

until the water level reaches Li.

Restarting is only possible after both

pools have been emptied.

• Q: Draw a StateChart that models

this system.

3/18

H1

L1

H2

L2

F1 F2

G1 G2

m

reservoir

Pool 1 Pool 2

Real Time Solution – Reservoir

3/19

A

B1 B2

m \ F1=1;F2=1

C1

H1 \ F1=0;G1=1 H2 \ F2=0;G2=1

C2

D1

L1 \ G1=0

D2

L2 \ G2=0

ε [D1 && D2]

H1

L1

H2

L2

F1 F2

G1 G2

m

reservoir

Pool 1 Pool 2

Usability

• Intuitive language to describe event driven automata

• New: Concurrency incl. synchronization

• Used in different flavors in industry and even

for kids:

3/20

Summary

• Advantages of hierarchical state machines:

– Simple transformation into efficient hardware and software

implementations

– Efficient simulation

– Basis for formal verification (usually via symbolic model checking), if in

reactions only events are generated

• Disadvantages:

– Intricate for large systems, limited re-usability of models

– No formal representation of operations on data

– Large part of the system state is hidden in variables. This limits

possibilities for efficient implementation and formal verification.

3/21

Where are we?

• StateCharts

– Hierarchy

– Concurrency

– Events and Actions

– Simulation Semantics

– Non-Determinism and Conflicts

• Petri Nets

– Notation

– Concurrency

– Petri Net Languages

– Behavioral Properties

– Analysis

3/22

ü

Petri nets – Motivation

• In contrast to hierarchical state machines, state transitions in Petri nets

are asynchronous. The ordering of transitions is partly uncoordinated; it

is specified by a partial order.

• Therefore, Petri nets can be used to model concurrent distributed

systems.

• Many flavors of Petri nets are in use, e.g.

– Activity charts (UML)

– Data flow graphs and marked graphs

– GRAFCET (programming language for prog. logic controllers)

• Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation mit

Automaten”

3/23

Petri net – Definition

• A Petri net is a bipartite, directed graph defined by a 4-tuple

(S, T, F, M0), where

– S is a set of places pi

– T is a set of transitions ti

– F is a set of edges (flow relations) fi

– M0 : S → N; the initial marking

3/24

p1 p3

p5 p4

p2

t1 t2

Token marking

• Each place pi is marked with a certain number of

tokens

• The initial distribution of the tokens is given by M0

• M(s) denotes the marking of a place s

• The distribution of tokens on places defines the

state of a Petri net

• The dynamics of a Petri net is defined by

a token game

3/25

1

2

t1

Token game of Petri nets

• A marking M activates a transition t T if each place pi connected through

an edge fi towards t contains at least one token.

• If a transition t is activated by M, a state transition to M’ fires (happens)

eventually.

• Only one transition is fired at any time.

• When a transition fires, it

– Consumes a token from each of its input places

– Adds a token to each of its output places

3/26

3 4

1 2

t1

3 4

1 2

t1
t1 fires

Non-Deterministic Evolution

• Any of the activated transactions might fire

3/27

The evolution of Petri nets is not deterministic.

3 4

1 2

t1t2

3 4

1 2

t1t2

3 4

1 2

t1t2

t2 t1

Syntax Exercise

Q: Is it a valid Petri Net? Which transitions are activated? Marking after firing?

3/28

A B C D E

F G H I

Syntax Exercise (2)

Q: Is it a valid Petri Net? Which transitions are activated? Marking after firing?

3/29

J K

L

t2t1

Weighted Edges

• Associating weights to edges:

– Each edge fi has an associated weight W(fi) (defaults to 1)

– A transition t is active if each place pi connected through an

edge fi to t contains at least W(f) tokens.

3/30

H2 O2

Reaction

2 H2 + O2 → 2H2O

2

2

H2O

H2 O2

2

2

H2O

Finite Capacity Petri Net

• Each place pi can hold maximally K(pi) tokens

• A transition t is only active if all output places pi of t cannot exceed K(pi)

after firing t.

• Pure finite capacity Petri Nets can be transformed into equivalent

infinite capacity Petri Nets (without capacity restrictions).

• Equivalence: Both nets have the same set of all possible firing sequences

3/31

1

2 K(2)=1

t1

t2

1

2 K(2)=1

t1

t2

1

2 K(2)=1

t1

t2

t1

t2

Removing Capacity Constraints

• For each place p with K(p) > 1, add a complementary place p’ with initial

marking M0(p’) = K(p) – M0(p).

• For each outgoing edge e = (p, t), add an edge e’ from t to p’ with weight

W(e).

• For each incoming edge e = (t, p), add an edge e’ from p’ to t with weight

W(e).

3/32

1

2 K(2)=3

t1

t2

1

2

t1

t2

2’

2 2

2

remove capacity

constraint

Note: Only works for

pure Petri nets, i.e.

without self loops.

1

3

K(p)=5

Resolving Self-Loops

• The algorithm to remove capacity constraints works if the Petri net has no

self loops (is pure).

• No Problem! Rewrite the Petri net without self loops:

3/33

1

1t1

1’

t1 t2

dummy

transition

dummy

place

Your turn!

• Remove the capacity constraint from place 3

3/34

2

3
K(3)=3

t2

t3

1

4

t4

t1

t5

2

2

3

t2

t3

1

4

t4

t1

t5

2

3’

2

Modeling FSM

• FSM can be represented by a subclass of Petri nets, where each transition

has exactly one incoming edge and one outgoing edge.

• Such Petri nets are called state machines

• Coke vending machine revisited

3/35

1

2

4

5

D

Q

Q

3

D

4

D|Q

Q

D

6

D

Q D

4

Q

D|Q

Soda

10 ¢

40 ¢

30 ¢20 ¢

≥ 45 ¢

35 ¢

25 ¢

Concurrent Activities

• State machines allow representation of decision, but no synchronization.

• General Petri nets support concurrency with intuitive notation:

3/36

decision / conflict fork join / synchronization

Petri Net Languages

• Transitions labeled with (not necessarily distinct) symbols

• Any sequence of firing the transitions generates a string of symbols (word)

3/37

e e e

a b c

Final

place

L(M0) = {an bm cm | n ¸ m ¸ 0 }???

• Every finite-state machine can be modeled by a Petri net

Every regular language is a Petri net language

Behavioral Properties

Reachability

A marking Mn is reachable iff there exists a sequence of firings

{t1, t2, … tn} s.t. Mn = M0 · t1 · t2 · … · tn

Reachability is decidable, but takes exponential space (and time) for the

general case

K-Boundedness

A Petri net is K-bounded if the number of tokens in every place never

exceeds K. The number of states is finite.

Safety

1-Boundedness: Every node holds at most 1 token at any time

3/38

Behavioral Properties (2)

Liveness

Having reached Mn from M0, can we eventually fire any transition?

Closely related to the complete absence of dead locks.

A transition t in a Petri net is

dead iff t cannot be fired in any firing sequence of L(M0)

L1-live iff t can be fired at least once in some sequence of L(M0)

L2-live iff, " k Î N+, t can be fired at least k times in some

sequence of L(M0)

L3-live iff t appears infinitely often in some infinite sequence of L(M0)

L4-live (live) iff t is L1-live for every marking reachable from M0

Note: L4-liveness) L3-liveness) L2-liveness) L1-liveness

3/39

Liveness Example

3/40

1

2

t1

t2

3

1

2

3

t1

t2

t3

t3

Analysis Methods

Coverability tree

Enumeration of all reachable markings, limited to small nets

Incidence Matrix

Describes the token-flow

Allows a necessary but not sufficient condition for reachability

Reduction Rules

Simplification rules to rewrite a Petri net, conserving liveness, safeness

and boundedness properties.

3/41

Coverability Tree

• Question: What token distributions are reachable?

• Problem: There might be infinitely many)must avoid infinite tree

• Solution: Detect & handle infinite cycles

– Special symbol w to denote an arbitrary number of tokens

3/42

2

t3

t2

1

3

t1

t0

M0 = [1 0 0]

M1 = [0 0 1]

t1 t3

M3 = [1 w 0]

M4 = [0 w 1]

t2

M5 = [0 w 1]

t1 t3

M6 = [1 w 0]

deadend

old

old

Coverability Tree – the Algorithm

Special symbol w, similar to ¥: "nÎN: w > n; w = w ± n; w¸ w

• Label initial marking M0 as root and tag it as new

• while new markings exist, pick one, say M

– If M is identical to a marking on the way from the root to M, mark it

as old; continue;

– If no transitions are enabled at M, tag it as deadend;

– For each enabled transition t at M do

– Obtain marking M' = M · t

– If there exists a marking M'' on the way from the root to M s.t.
M'(p) ¸M''(p) for each place p and M' ¹ M'', replace M'(p) with

w for p where M'(p) > M''(p).

– Introduce M' as a node, draw an arc with label t from M to M'

and tag M' new.

3/43

Results from the Coverability Tree T

• The net is bounded iff w does not appear in any node label of T

• The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T

• A transition t is dead iff it does not appear as an arc in T

• If M is reachable from M0, then there exists a node M' s.t. M ≤ M'. (This is a

necessary, but not sufficient condition for reachability.)

• For bounded Petri nets, this tree does not contain w and is also called

reachability tree, as all reachable markings are contained in it.

3/44

Incidence Matrix

• Goal: Describe a Petri net through equations

• The incidence matrix A (m ´ n) describes the token-flow according for the

n different transitions

• Aij = gain of tokens at node i ≤ m when transition j ≤ n fires

• A marking M is written as a m ´ 1 column vector

3/45

1

t2

2

t3

3

4

t1

2

2

2

State Equation

• The firing vector ui describes the firing of

transition ti. It consists of all ‘0’, except for the

i-th row, where it has a ‘1’.

E.g.

• A transition ti from Mk to Mk+1 is written as

Mk+1 = Mk + A · ui

M1 is obtained from M0 by firing t3

3/46

1

t2

2

t3

3

4

t1

2

2

2

State Equation: Reachability

• A marking Mk is reachable from M0 if there is a

sequence σ of k transitions {tσ[1], tσ[2], …, tσ[k]}

such that Mk = M0 · tσ[1] · tσ[2] · … · tσ[k].

• Expressed with the incidence matrix:

which can be rewritten as

If Mk is reachable from M0, equation (2) must have a

solution where all components of are positive

integers.

(This is a necessary, but not sufficient condition for reachability.)

3/47

1

t2

2

t3

3

4

t1

2

2

2

(1)

(2)

å
=

×+=
k

1i

][0k uAMM
is

xAΔMMM 0k

r

×==-

Reduction Rules

• Analysis of Petri nets is tedious, especially for large, complex nets

• Often, the complexity for analysis increases exponentially with the size of

the Petri net

• Solution: Simplify the net while retaining the properties to analyze.

• In our case, the properties in question are

– Liveness

– Safeness

– Boundedness

• 6 of the simplest reduction rules are shown in the sequel

3/48

Reduction Rules (2)

3/49

Fusion of Series Places (FSP) Fusion of Series Transitions (FST)

Fusion of Parallel Places (FPP) Fusion of Parallel Transitions (FPT)

Reduction Rules (3)

3/50

Elimination of Self Loop Places (ESP) Elimination of Self Loop Transitions (EST)

Reduction Example

3/51

1

2

3 4

t2t1

t3

t4

Common Extensions

• Colored Petri nets: Tokens carry values (colors)

Any Petri net with finite number of colors can

be transformed into a regular Petri net.

• Continuous Petri nets: The number of tokens can be real.

Cannot be transformed to a regular Petri net

• Inhibitor Arcs: Enable a transition if a place contains no tokens

Cannot be transformed to a regular Petri net

3/52

e e e

a b c

Final

place

