Overview

Chapter 6

NETWORK CALCULUS

- Motivation / Introduction
- Preliminary concepts
- Sections 1.2, 1.3, 1.4.1
- Min-Plus linear system theory
- Section 3.1
- The composition theorem
- Adversarial queuing theory
- Instability of FIFO
- Stability of LIS

What is Network Calculus/Adversarial Queuing Theory?

- Problem: Queuing theory (Markov/Jackson assumptions) too optimistic.
- Instead: Worst-case analysis (with bounded adversary) of queuing or flow systems arising in communication networks
- Network Calculus
- Algebra developed by networking ("EE") researchers
- Adversarial Queuing Theory
- Worst-case analysis developed by algorithms ("CS") researchers

An example

- assume $R(t)=$ sum of arrived traffic in $[0, t]$ is known
- required buffer for a bit rate c is

$$
\sup _{s \leq t}\{R(t)-R(s)-c \cdot(t-s)\}
$$

\qquad

bit rate c
$\sup _{s \leq t}\{R(t)-R(s)-c \cdot(t-s)\}$
in Book "Network Calculus" by Le Boudec and Thiran

- Similarly to queuing theory, Internet integrated services use the concepts of arrival curve and service curves

Arrival Curves can be assumed sub-additive

- Theorem (without proof):
α can be replaced by a sub-additive function
- sub-additive means: $\alpha(s+t) \leq \alpha(s)+\alpha(t)$
- concave \Rightarrow subadditive

Arrival Curves

- Arrival curve $\alpha: R(t)-R(s) \leq \alpha(t-s)$, for all pairs $s \leq t$.

Examples:

- leaky bucket $\alpha(u)=r u+b$
- reasonable arrival curve in the Internet $\alpha(u)=\min (p u+M, r u+b)$

Service Curve

- System S offers a service curve β to a flow iff for all t there exists some s such that

$$
R^{*}(t)-R(s) \geq \beta(t-s)
$$

Theorem: The constant rate server has service curve $\beta(t)=c t$

Proof: take $s=$ beginning of busy period. Then,

$$
\begin{aligned}
& R^{*}(t)-R^{*}(s)=c \cdot(t-s) \\
& R^{*}(t)-R(s) \geq c \cdot(t-s)
\end{aligned}
$$

Tight Bounds on delay and backlog

If flow has arrival curve α and node offers service curve β then

- backlog $\leq \sup (\alpha(s)-\beta(s))$
- delay $\leq h(\alpha, \beta)$

For reasonable arrival and service curves

- delay bound: $b / R+T$
- backlog bound: $b+r T$

Another linear system theory: Min-Plus

- Standard algebra: $\quad R,+, \times$

$$
a \times(b+c)=(a \times b)+(a \times c)
$$

- Min-Plus algebra:

R, min, +

 $a+(b \wedge c)=(a+b) \wedge(a+c)$- Standard convolution:

$$
(f * g)(t)=\int f(t-u) g(u) d u
$$

- Min-plus convolution

$$
f \otimes g(t)=\inf _{u}\{f(t-u)+g(u)\}
$$

Min-plus convolution

- We can express arrival and service curves with min-plus
- Arrival Curve property means

$$
R \leq R \otimes \alpha
$$

- Service Curve guarantee means

$$
R^{*} \geq R \otimes \beta
$$

- Theorem: the concatenation of two network elements offering service curves β_{i} and β_{2} respectively, offers the service curve $\beta_{1} \otimes \beta_{2}$

$\beta_{1} \otimes \beta_{2}$

Pay Bursts Only Once

$$
D_{1}+D_{2} \leq\left(2 b+R T_{1}\right) / R+T_{1}+T_{2}
$$

$$
D \leq b / R+T_{1}+T_{2}
$$

end-to-end delay bound is less

Network Model

- We will revise several models of connectionless packet networks.
- We have a bounded adversary which defines the network traffic.
- Like network calculus
- Our objective is to study stability under these adversaries.
- If a network is stable, we study latency.
- [Thanks to Antonio Fernández for many of the following slides.]

Example

- We are given two packets, each needs to cross three links.
- There is congestion on the link $B \rightarrow D$, the execution needs 4 steps.

- The general network model assumed is as follows
- A network is a directed graph.
- Packets arrive continuously into the nodes of the network.
- Link queues are not bounded.
- A packet has to be routed from its source to its destination.
- At each link packets must be scheduled: if there are several candidates to cross, one must be chosen by the scheduler.
- To make the analyses simpler initially, we assume
- All packets have the same unit length.
- All links have the same bandwidth.
- This allows to consider a synchronous system, that is, the network evolves in steps. In each step each link can be crossed by at most one packet.

Adversarial Queuing Theory Model

- [Borodin, Kleinberg, Raghavan, Sudan, Williamson, STOC96]
- [Andrews, Awerbuch, Fernandez, Kleinberg, Leighton, Liu, FOCS96]
- There is an adversary that chooses the arrival times and the routes of all the packets
- The adversary is bounded by parameters (r, b), where $b \geq 1$ is an integer and $r \leq 1$, such that, for any link e, for any $s \geq 1$, at most $r s+b$ packets injected in any s-step interval must cross edge e.
- We have a scheduling problem.
- A scheduling policy P is stable at rate (r, b) in a network G if there is a bound $C(G, r, b)$ such that no (r, b)-adversary can force more than $C(G, r, b)$ simultaneous packets in the network.
- A scheduling policy P is universally stable if it is stable at any rate $r<1$ in any network.
- A network G is universally stable if it is stable at any rate $r<1$ with any greedy scheduling policy.
- Any directed acyclic graph (DAG) is universally stable, even for $r=1$ [BKRSW01].
- The ring is universally stable
- There are never more than $O(b n /(1-r))$ packets in any queue.
- A packet never spends more than $O\left(b n /(1-r)^{2}\right)$ steps in the system.
- Any added link makes the ring unstable with some greedy policy (for instance with Nearest-to-Go, NTG).
- FIFO is unstable for $r>0.85$ with these networks:

Some Results

Proof of FIFO Instability

- Initially we have s packets in a queue with a given configuration.
- Think of these packets to be inserted in an initial burst
- Then the algorithm proceeds in phases
- Each phase is a bit longer than the phase before.
- After each phase, we have the initial configuration, however, with more packets in a specific queue than in the previous phase.
- By chaining infinite phases, any number of packets in the system can be reached.
- We show here the behavior of the adversary and the system in one phase.
- Each phase has three rounds.

Initial Situation

Situation after the second round

More Results

- Several simple greedy policies are universally stable
- Longest-in-System (LIS): Gives priority to oldest packet (in the system).
- Shortest-in System (SIS): Gives priority to newest packet (in the system).
- Farthest-to-Go (FTG): Gives priority to the packet farthest from destination
- Nearest-to-Source (NTS): Gives priority to the packet closest to its origin.
- All mentioned greedy policies can suffer delays that are exponential in d, where d is the maximum routing distance.
- Moreover, any deterministic policy that does not use information about the packet routes to schedule can suffer delays exponential in Vd [Andrews Z 04].
- There are deterministic distributed algorithms that guarantee polynomial delays and queue lengths [Andrews FGZ 05]

- Network G, adversary in bucket AQT with parameters $r=1-\varepsilon<1$ and $b \geq 1$.
- Def.: Class L is the set of packets injected in step L.
- Def.: A class L is active at the end of step t if there are some packets of class $L^{\prime} \leq \mathrm{L}$ in the system at the end of step t.
- Let us consider a packet p injected in step T_{0}. Packet p must cross d links, it crosses the i-th link in step T_{i}.
- Def.: $c(t)$ is the number of active classes at the end of step t. Let $\mathrm{c}=\max _{\mathrm{T}_{0} \leq \mathrm{t}<\mathrm{T}_{\mathrm{d}}} \mathrm{c}(\mathrm{t})$, that is the maximum number of active classes during the lifetime of packet p.

Lemma: $T_{d}-T_{0} \leq\left(1-\varepsilon^{d}\right)\left(c+\frac{b}{1-\varepsilon}\right)$.

- p arrives to the queue of its $\mathrm{i}^{\text {th }} \operatorname{link}$ in $\mathrm{T}_{\mathrm{i}-1}$.
- Only the packets in $\mathrm{c}-\left(\mathrm{T}_{\mathrm{i}-1}-\mathrm{T}_{0}\right)$ active classes can block p .
- There are no more than $(1-\varepsilon)\left(c+T_{0}-T_{i-1}\right)+b$ packets in these classes (p included), that is at most $(1-\varepsilon)\left(c+T_{0}-T_{i-1}\right)+b-1$ packets can block p. Then,

$$
\begin{aligned}
T_{i} & \leq T_{i-1}+(1-\varepsilon)\left(c+T_{0}-T_{i-1}\right)+b \\
& =\varepsilon T_{i-1}+(1-\varepsilon)\left(c+T_{0}\right)+b . \\
T_{d} & \leq\left((1-\varepsilon)\left(c+T_{0}\right)+b\right) \sum_{i=0}^{d-1} \varepsilon^{i}+\varepsilon^{d} T_{0} \\
& =\left((1-\varepsilon)\left(c+T_{0}\right)+b\right) \frac{1-\varepsilon^{d}}{1-\varepsilon}+\varepsilon^{d} T_{0} \\
& =\left(1-\varepsilon^{d}\right)\left(c+\frac{b}{1-\varepsilon}\right)+T_{0}
\end{aligned}
$$

Theorem: LIS is universally stable

- Each packet leaves the system after $\mathrm{c}=\mathrm{b} /\left((1-\varepsilon) \varepsilon^{\mathrm{d}}\right)$ steps.
- In addition one can show that there are at most $\mathrm{b}+\mathrm{b} / \varepsilon^{\mathrm{d}}$ packets in each queue at all times.

Lemma: Bounding both classes and steps

- Let t be the first time when either the system features more than c classes, or there is a packet in the system for more than c steps, for some c.
- Clearly, "classes" cannot be violated first, because there can only be c+1 classes if there is at least one packet in the system for at least $\mathrm{c}+1$ steps.
- So we know that "steps" must be violated first. Let p be a first packet which is in the system for at least $\mathrm{c}+1$ steps. (Note that during this time, we had at most c classes.)
- Let $\mathrm{c}=\mathrm{b} /\left((1-\varepsilon) \varepsilon^{\mathrm{d}}\right)$. Then the packet p cannot be in the system for more than c steps, because using our previous lemma (and $\mathrm{b} \geq 1$ and $\varepsilon>0$), the number of steps of p is bounded:

$$
\left(1-\varepsilon^{d}\right)\left(c+\frac{b}{1-\varepsilon}\right)+1=c-\varepsilon^{d} b /(1-\varepsilon)+1<c+1
$$

- That's all folks!

