
6/1ETH Zurich – Distributed Computing Group

Roger Wattenhofer

Network Updates
Part 3, Chapter 6

6/2

Overview

• Software-Defined Networking

• Loop-Free Updates

• Consistent Updates

• Bandwidth

– Maximization

– Fairness

– Updates

6/3

Network Updates

• The Internet: Designed for selfish participants

– Often inefficient (low utilization of links), but robust

• But what happens if the WAN is controlled by a single entity?

– Examples: Microsoft & Amazon & Google …

– They spend hundreds of millions of dollars per year

6/4

Software-Defined Networking

• Possible solution: Software-Defined Networking (SDNs)

• General Idea: Separate data & control plane in a network

• Centralized controller updates networks rules for optimization

– Controller (control plane) updates the switches/routers (data plane)

• Centralized controller implemented with replication, e.g. Paxos

Virtual Services Controller Physical Network

6/5

Example

SDN Controller

6/6

Example

SDN Controller

v1 v2

6/7

Dependencies

Version Numbers

+ stronger packet coherence

– version number in packets

– switches need to store both versions

v1 “Better” Solution

𝑢 𝑣 𝑥 𝑦

𝑢 𝑣 𝑥 𝑦

𝑦

𝑥

6/8

Minimum SDN Updates?

6/9

Minimum Updates: Another Example

𝑤

𝑢

𝑤

𝑣

or

6/10

Minimum vs. Minimal

No node can improve
without hurting another

node

6/11

Minimal Dependency Forest

Next: An algorithm to compute minimal dependency forest.

6/12

Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

old

newnew

old

6/13

Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

• Originally, destination node in new state, all other nodes in old state

• Invariant: No loop!

𝑑

6/14

Algorithm for Minimal Dependency Forest

Initialization

• Old node 𝑢: No loop* when adding new pointer, move node to limbo!

• This node 𝑢 will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide

𝑑(no loop)

6/15

Loop Detection

• Will a new rule u.new = v induce a loop?

– We know that the graph so far has no loops

– Any new loop must contain the edge (u,v)

• In other words, is node u now reachable from node v?

• Depth first search (DFS) at node v

– If we visit node u: the new rule induces a loop

– Else: no loop

u v

u v

new

new

6/16

Algorithm for Minimal Dependency Forest

• Limbo node 𝑢: Remove old pointer (move node to new)

• Consequence: Some old nodes 𝑣 might move to limbo!

• Node 𝑣 will be child of 𝑢 in dependency forest!

𝑑(remove old)

(now: no loop)

6/17

Algorithm for Minimal Dependency Forest

Process terminates

• You can always move a node from limbo to new.

• Can you ever have old nodes but no limbo nodes? No, because…

…one can easily derive a contradiction!

new

𝑑
old

new!

6/18

Main Contribution

For a given consistency property, what
is the minimal dependency possible?

6/19

Consistency Space

6/20

It’s not just how to compute new rules.

It is also how to gracefully get
from current to new configuration,

respecting consistency.

6/21

Architecture

Rule
generator

Update plan
generator

Plan optimizer
and executor

Routing
policy

Consistency
property

Network
characteristics

New
rules

Update
DAG

6/22

Update DAG

Insert rule 𝑟
at node 𝑢

Remove rule 𝑠
at node 𝑣

Insert rule 𝑡
at node 𝑤

Wait 10s
Remove rule
𝑞 at node 𝑥

Insert rule 𝑝
at node 𝑦

Logical OR

6/23

Multiple Destinations using Prefix-Based Routing

• No new “default” rule can be introduced without causing loops

• Solution: Rule-Dependency Graphs!

• Deciding if simple update schedule exists is hard!

6/24

Breaking Cycles

Insert 𝑢𝑤 Remove 𝑢𝑣 Insert 𝑣𝑢

Insert 𝑤𝑣 Remove 𝑣𝑤Remove 𝑤𝑢

Insert at 𝑤:
dest 𝑣: 𝑤𝑣

Remove at 𝑤:
dest 𝑣: 𝑤𝑣

6/25

Architecture

Rule
generator

Update plan
generator

Plan optimizer
and executor

Routing
policy

Consistency
property

Network
characteristics

New
rules

Update
DAG

6/26

Breaking Cycles

Insert 𝑢𝑤 Remove 𝑢𝑣 Insert 𝑣𝑢

Insert 𝑤𝑣 Remove 𝑣𝑤Remove 𝑤𝑢

Insert at 𝑤:
dest 𝑣: 𝑤𝑣

Remove at 𝑤:
dest 𝑣: 𝑤𝑣

6/27

Are Minimal Dependencies Good?

Plan optimizer
and executor(But will fix it.)

6/28

Architecture

Rule
generator

Update plan
generator

Plan optimizer
and executor

Routing
policy

Consistency
property

Network
characteristics

New
rules

Update
DAG

6/29

Real Application: Inter-Data Center WANs

Think: Google, Amazon, Microsoft

6/30

U
ti

liz
at

io
n

Time [1 Day]

peak before rate adaptation

> 50%
peak reduction

mean

Problem: Typical Network Utilization

6/31

Background
traffic

Non-background traffic

U
ti

liz
at

io
n

Time [1 Day]

mean

Problem: Typical Network Utilization

6/32

Background traffic

Non-background traffic

U
ti

liz
at

io
n

Time [1 Day]

peak before rate adaptation

peak after rate adaptation

> 50%
peak reduction

Problem: Typical Network Utilization

6/33

1 2 3

567

1 2 3

567

BetterMPLS-TE

Another Problem: Online Routing Decisions

flow arrival order: A, B, C

each link can carry at most one flow (in both directions)

4

4

6/34

WAN
switches

rate
allocation

network
configuration

[rate limiting] [forwarding plane update]

SWAN controller

traffic
demand

topology,
traffic

[global optimization for high utilization]

Hosts

The SWAN Project

6/35

Algorithms?

• Priority classes (2-3)

• Allocate highest priority first

• Solve with multi-commodity flow (LP) within each class

– Flows are splittable

– Well understood, fast enough for our input (seconds)

• But: Within a priority class we want max-min fairness (“𝑓𝑖 ≥ 𝑓,max𝑓”)

– Definition: Make nobody richer at cost of someone poorer

– Works, but now one has to solve linearly many LPs, which is too slow (hours)

– A perfect example of algorithm engineering?

• Solution: Fairness approximation!

6/36

Multicommodity Flow LP

max
𝑖
𝑓𝑖

0 ≤ 𝑓𝑖 ≤ 𝑑𝑖

 𝑖 𝑓𝑖(𝑒) ≤ 𝑐 𝑒

𝑢
𝑓𝑖 𝑢, 𝑣 =

𝑤
𝑓𝑖 𝑣,𝑤

𝑣
𝑓𝑖(𝑠𝑖 , 𝑣) =

𝑢
𝑓𝑖(𝑢, 𝑡𝑖) = 𝑓𝑖

Maximize throughput

Flow less than demand

Flow less than capacity

Flow conservation on inner
nodes

Flow definition on source,
destination

6/37

Approximated max-min fairness

demand 𝑑1
demand 𝑑2

demand 𝑑3

demand 𝑑4

demand 𝑑5

6/38

Approximated max-min fairness

𝑓

1 + 𝜀 𝑓

demand 𝑑1
demand 𝑑2

demand 𝑑3

demand 𝑑4

demand 𝑑5

6/39

Approximated max-min fairness

𝑓

1 + 𝜀 𝑓

(1 + 𝜀)2𝑓

demand 𝑑1
demand 𝑑2

demand 𝑑3

demand 𝑑4

demand 𝑑5
MCF solver:

Maximize throughput
Prefer shorter paths

6/40

Approximated max-min fairness

𝑓

1 + 𝜀 𝑓

(1 + 𝜀)2𝑓

demand 𝑑1
demand 𝑑2

demand 𝑑3

demand 𝑑4

demand 𝑑5
MCF solver:

Increase demand window
Fix demand of smaller flows

6/41

Approximated max-min fairness

𝑓

1 + 𝜀 𝑓

(1 + 𝜀)2𝑓

demand 𝑑1
demand 𝑑2

demand 𝑑3

demand 𝑑4

demand 𝑑5
MCF solver:

Continue, until all
flows fixed

6/42

Approximated max-min fairness

• In theory, this process is 1 + 𝜀 competitive

• In practice, with 𝜀 = 1, only 4% of flows deviate over 5% from their fair share

𝑓

1 + 𝜀 𝑓

(1 + 𝜀)2𝑓

demand 𝑑1
demand 𝑑2

demand 𝑑3

demand 𝑑4

demand 𝑑5

6/43

Fairness: SWAN vs. MPLS TE

R
el

at
iv

e
d

ev
ia

ti
o

n

Flows sorted according to demand

SWAN (𝜀 = 1)

MPLS TE

6/44

Problem: Consistent Updates

target state

A
B

B

A

A

B✘
B

A ✘

6/45

Capacity-Consistent Updates

• Not directly, but maybe through intermediate states?

• Solution: Leave a fraction 𝑠 slack on each edge, less than 1/𝑠 steps

• Example: Slack = 1/3 of link capacity

6/46

Example: Slack = 1/3 of link capacity

6/47

Capacity-Consistent Updates

• Alternatively: Try whether a solvable LP with 𝑘 steps exist, for 𝑘 = 1, 2, 3…

– Sum of flows in steps 𝑗 and 𝑗 + 1, together, must be less than capacity limit

𝑓𝑖
0 ≤ 𝑓𝑖

𝑘

𝑖
max 𝑓𝑖

𝑗
𝑒 , 𝑓𝑖
𝑗+1
𝑒 ≤ 𝑐 𝑒

𝑢
𝑓𝑖
𝑗
𝑢, 𝑣 =

𝑤
𝑓𝑖
𝑗
𝑣,𝑤

𝑣
𝑓𝑖
𝑗
(𝑠𝑖 , 𝑣) =

𝑢
𝑓𝑖
𝑗
(𝑢, 𝑡𝑖) = 𝑓𝑖

𝑗

Only growing flows

Flow less than capacity

Flow conservation on inner
nodes

Flow definition on source,
destination

6/48

Evaluation platforms

• Prototype

• 5 DCs across 3 continents

• 10 switches

• Data-driven evaluation

• 40+ DCs across 3 continents

• 80+ switches

6/49

Time for One Network Update

6/50

Prototype Evaluation

Time [minutes]

Goodput
(normalized
& stacked)

Traffic: (∀DC-pair) 125 TCP flows per class

High utilization
SWAN’s goodput:

98% of an optimal method

Flexible sharing
Interactive protected;

background rate-adapted

optimal linedips due to rate adaptation

6/51

Data-driven Evaluation of 40+ DCs

U
ti

liz
at

io
n

6/52

Summary

6/53

References

• Introducing consistent network updates was done in Mark Reitblatt et. al.,
SIGCOMM 2012

• For minimal loop-free updates and more see Ratul Mahajan et. al.,
HotNets 2013

• Deciding if a simple update schedule exists is hard was proven in Laurent
Vanbever et. al., IEEE/ACM Trans. Netw. 2012

• For one of the first papers on loop-detection you can look at Robert
Tarjan, Depth-first search and linear graph algorithms, 1972

• For more on the SWAN-project see Chi-Yao Hong et. al., SIGCOMM 2013

6/54

Thank You!
Questions & Comments?

www.disco.ethz.ch

6/55

Evaluation

