Network Updates

Part 3, Chapter 6

by

Roger Wattenhofer

ETH Zurich — Distributed Computing Group

Overview

e Software-Defined Networking
e Loop-Free Updates
e Consistent Updates

e Bandwidth
— Maximization
— Fairness
— Updates

Network Updates

=0 THESE INTEAHELS
) nNEED

e RESULATION
e The Internet: Designed for selfish participants <

— Often inefficient (low utilization of links), but robust

e But what happens if the WAN is controlled by a single entity?
— Examples: Microsoft & Amazon & Google ...
— They spend hundreds of millions of dollars per year

Software-Defined Networking

e Possible solution: Software-Defined Networking (SDNs)

e General Idea: Separate data & control plane in a network

e Centralized controller updates networks rules for optimization
— Controller (control plane) updates the switches/routers (data plane)

Virtual Services <4 Controller <4=mm) Physical Network

e Centralized controller implemented with replication, e.g. Paxos

Example

Example

6/6

Dependencies

Version Numbers

u v x y

u v x y

+ stronger packet coherence
— version number in packets
— switches need to store both versions

“Better” Solution

<

=

Minimum SDN Updates?

Minimum Updates: Another Example

No node can improve
without hurting another
node

Minimum vs. Minimal

Minimal Dependency Forest

MHK Ue—e X
—

Next: An algorithm to compute minimal dependency forest.

Algorithm for Minimal Dependency Forest

e Each node in one of three states: old, new, and limbo (both old and new)

6/12

Algorithm for Minimal Dependency Forest

e Each node in one of three states: old, new, and limbo (both old and new)
e Originally, destination node in new state, all other nodes in old state
e Invariant: No loop!

6/13

Algorithm for Minimal Dependency Forest

Initialization

Old node u: No loop™* when adding new pointer, move node to limbo!
e This node u will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide

6/14

Loop Detection

new

e Will a new rule u.new =vinduce a loop? ue@
— We know that the graph so far has no loops
— Any new loop must contain the edge (u,v)

* |n other words, is node u now reachable from node v?

e Depth first search (DFS) at node v
— If we visit node u: the new rule induces a loop
— Else: no loop

Algorithm for Minimal Dependency Forest

e [imbo node u: Remove old pointer (move node to new)
e Consequence: Some old nodes v might move to limbo!
e Node v will be child of u in dependency forest!

6/16

Algorithm for Minimal Dependency Forest

Process terminates

e You can always move a node from limbo to new.

e Can you ever have old nodes but no limbo nodes? No, because...

...one can easily derive a contradiction!

6/17

Main Contribution

For a given consistency property, what
is the minimal dependency possible?

Consistency Space

None Self Downstream Downstream Global
subset all
Eventual 'JTL 1,‘_”&?5
X guaranteed
consistency
Drop Impossible Add before
freedom remaove
Memory Impossible Hemove before
limit add
Loop Impaossible Rule dep. forest Rule dep. tree
freedom
Packet Impossible Per-flow ver. Global ver.
coherence numbers numbers
Bandwidth [mpossible Staged partial
limit moves

It’s not just how to compute new rules.

It is also how to gracefully get
from current to new configuration,
respecting consistency.

Architecture

Routing Consistency Network
poIicy property cha racteristics

RuIe New Update plan Update Plan optlmlzer
generator | rules |__generator DAG and executor |

Update DAG

Insert rule r
at node u

Wait 10s

Remove rule s
at node v

Insert rule t
at node w

Remove rule
q at node x

Logical OR

Insert rule p
at node y

Multiple Destinations using Prefix-Based Routing

Vv V

U * W u —

e No new “default” rule can be introduced without causing loops
e Solution: Rule-Dependency Graphs!
e Deciding if simple update schedule exists is hard!

Breaking Cycles

Vv V

Insert at w:

Insert u=>w Remove u=>v Insert v2>u
dest v: w=2v

Remove at w:
dest v: w=>v

Remove w=u Insert w=>v Remove v=>w

Architecture

Routing Consistency Network
poIicy property cha racteristics

RuIe New Update plan Update Plan optlmlzer
generator | rules |__generator DAG and executor |

Breaking Cycles

Vv V

Insert at w:

Insert u=>w Remove u=>v Insert v2>u
dest v: w=2v

Remove at w:
dest v: w=>v

Remove w=u Insert w=>v Remove v=>w

Are Minimal Dependencies Good?

it depends

Plan optimizer
and executor

(But will fix it.)

Architecture

Routing Consistency Network
poIicy property cha racteristics

RuIe New Update plan Update Plan optlmlzer
generator | rules |__generator DAG and executor |

Real Application: Inter-Data Center WANs

. NORTH AMERICA Dublin
Sgattle

New York
b Seoul

Los Angeles I
Hong Kong Miami

Think: Google, Amazon, Microsoft

Problem: Typical Network Utilization

peak before rate adaptatlon

Utilization

Time [1 Day]

Problem: Typical Network Utilization

s Background
traffic

Utilization

Non-background traffic

Time [1 Day]

6/31

Problem: Typical Network Utilization

0.8
0.6

Utilization

peak before rate adaptatlon

peak after rate adaptatlon

Time [1 Day]

- e R S >50% e
: f - peak reduction ﬁ

6/32

Another Problem: Online Routing Decisions

flow arrival order: A, B, C
each link can carry at most one flow (in both directions)

MPLS-TE Better

The SWAN Project

[global optimization for high utilization]

SWAN controller

traffic

p . topology,
demand #

traffic

/ rate network Y
§ allocation configuration %

VAN

Hosts .
SWItChEs

[rate limiting] [forwarding plane update]

6/34

Algorithms?

e Priority classes (2-3)
e Allocate highest priority first

e Solve with multi-commodity flow (LP) within each class
— Flows are splittable
— Well understood, fast enough for our input (seconds)

e But: Within a priority class we want max-min fairness (“f; = f, max f”)
— Definition: Make nobody richer at cost of someone poorer
— Works, but now one has to solve linearly many LPs, which is too slow (hours)
— A perfect example of algorithm engineering?

e Solution: Fairness approximation!

Multicommodity Flow LP

Maximize throughput maxz fi
i
Flow less than demand 0<f <d;
Flow less than capacity Yifi(e) < c(e)
Flow conservation on inner z fi(u,v) = Z fi(v,w)
nodes u w
Flow definition on source, Z fi(si,v) = Z fitwt;) = f;
v u

destination

Approximated max-min fairness

demand ds

demand d,

demand d;

demand d,
demand d;

Approximated max-min fairness

demand ds

demand d,

demand d;

(1+e)f

Approximated max-min fairness

MCEF solver:
Maximize throughput demand ds

Prefer shorter paths
demand d,

(1+e)?*f

demand d;

(1+e)f

Approximated max-min fairness

MCEF solver:
Increase demand window demand d;

Fix demand of «maller flows
demand d,

(1+e)?*f

(1+e)f

demand d;

Approximated max-min fairness

MCEF solver:
Continue, until all
flows fixed

(1+e)?*f

demand d;

(1+e)f

demand d,
demand d;

6/41

Approximated max-min fairness

demand d;

demand d,
demand d;

e Intheory, this process is (1 + &) competitive
e In practice, with € = 1, only 4% of flows deviate over 5% from their fair share

6/42

Fairness: SWAN vs. MPLS TE

Relative
deviation

O-NWHR OFNWEA

Flows sorted according to demand

Problem: Consistent Updates

Capacity-Consistent Updates

e Not directly, but maybe through intermediate states?

e Solution: Leave a fraction s slack on each edge, less than 1/s steps

e Example: Slack = 1/3 of link capacity

Init. state target state

A=2/3 B=2/3

/

A=2/3

Example: Slack = 1/3 of link capacity

Init. state target state

B=2/3:

A=2/3

A=

Capacity-Consistent Updates

e Alternatively: Try whether a solvable LP with k steps exist, fork = 1,2,3 ...
— Sum of flows in steps j and j + 1, together, must be less than capacity limit

Only growing flows < f
Flow less than capacity Z max (fij(e),fijﬂ(e)) < c(e)
i
Flow conservation on inner
nodes 2 fluv) = 2 7 (v,w)
u w

Flow definition on source,

destination zvfij (Si,v) — zufij (u’ ti) — f;j

Evaluation platforms

° Prototype —

® 5 DCs across 3 continents

® 10 switches

e Data-driven evaluation
® 40+ DCs across 3 continents

® 80+ switches

Time for One Network Update

tyts t3 t4 t5

]—Compute alIocatlon & rule change plan
Compute congestlon controlled plan

— Walt for rate l|m|t|ng

Change SWItCh rules

- | Rate
i 3 10 limitihg

0 5 10 15 20 25
Update time [s]

Prototype Evaluation

optimal line

dips due to rate adaptation

Goodput
(normalized
& stacked)

Time [minutes]

Traffic: (VDC-pair) 125 TCP flows per class

High utilization Flexible sharing

SWAN' s goodput: Interactive protected;
98% of an optimal method background rate-adapted

Data-driven Evaluation of 40+ DCs

Utilization

SWAN
SWAN w/o Rate ML
Control

6/51

Summary

None Self Downstream Downstream Global
subset all
e P
consistency B
Drop Impossible Add before
freedom remove
Memory Impossible Remove before
limit
Loop Tmpossible Rule dep. forest Rule dep. tree
freedom
Packet Impossible Per-How ver. Global ver.
coherence numbers numbers
Bandwidth Impossible Staged partial
limit moves
Routing Consistency Network
policy property characteristics
: Update plan ' Plan optimizer

enerator and executor

6/52

References

e Introducing consistent network updates was done in Mark Reitblatt et. al.,
SIGCOMM 2012

e For minimal loop-free updates and more see Ratul Mahajan et. al.,
HotNets 2013

e Deciding if a simple update schedule exists is hard was proven in Laurent
Vanbever et. al., IEEE/ACM Trans. Netw. 2012

e For one of the first papers on loop-detection you can look at Robert
Tarjan, Depth-first search and linear graph algorithms, 1972

e For more on the SWAN-project see Chi-Yao Hong et. al., SIGCOMM 2013

Thank You!

Questions & Comments?

S a o
R

www.disco.ethz.ch

Evaluation

100%
80%
60%
40%
20%

0%

1221

1239

1755 3257 3967 6461

/55

