

 $\mathrm{HS}\ 2015$

Prof. L. Thiele / R. Jacob

Discrete Event Systems Exercise Sheet 13

1 Structural Properties of Petri Nets and Token Game

Given is the following Petri net N_1 :

- a) What are the Pre and Post sets of transitions t_5 and t_8 and of place p_3 ?
- **b)** Which transitions are enabled after t_1 and t_2 fired?
- c) What is the total number of tokens in N_1 before and after t_2 fired?
- d) Play the token game for N_1 and construct the reachability graph. *Hint:* You may denote the states in such a way that the index indicates the places that hold a token in this state, for example $\vec{s_0} = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) \stackrel{\triangle}{=} s_{1,5}$.

2 Basic Properties of Petri Nets

Given is the following Petri net N_2 :

Explain the terms boundedness and deadlock-freeness using this example, i.e. for which values of $k \in \mathbb{N}$ is the Petri net N_2 bounded/unbounded and not deadlock-free?

3 Identifying a deadlock

The following Petri net N_3 describes two linear processes $(P_{A0/A1/A2} \text{ and } P_{B0/B1/B2})$ sharing resources R_1 and R_2 .

In the following, use $M = (P_{A0}, P_{A1}, P_{A2}, P_{R1}, P_{R2}, P_{B0}, P_{B1}, P_{B2})$ as marking vector and $T = (t_{A0}, t_{A1}, t_{A2}, t_{B0}, t_{B1}, t_{B2})$ as firing vector.

- a) Determine the reachability graph of this net for the given initial marking. Explicit one or several firing sequences leading to a blocking marking (i.e., to a deadlock). What is this blocking marking?
- b) Write down the upstream (W^-) and downstream (W^+) incidence matrices and deduce the incidence matrix A. Use it to compute the marking obtained in the deadlock state (i.e., by firing the blocking sequence) from the previous question.
- c) Using the upstream incidence matrix W^- , how can you prove that this previous state is a deadlock?
- d) Suggest a modification to this Petri net which allows the two linear processes P_A and P_B to run as intended in the first place.

4 From mutual exclusion to starvation

Your task is to model a system as a Petri net in which two processes want to access a common exclusive resource is a similar fashion as in Exercise 3. This means that the two processes have to exclude each other mutually from the concurrent access to the resource (e.g. a critical program section). More precisely:

- 1. A process executes its program.
- 2. In order to enter the critical section, a given mutex variable must be 0.
- 3. If this is the case, the process sets the mutex to 1 and executes its critical section.
- 4. When done, it resets the mutex to 0 and enters an uncritical section.
- 5. Then the procedure starts all over again.
- a) Propose a Petri net representing the desired behavior. *Hint:* use 5 places and 4 transitions.
- b) In this setting, it may happen that a process starves the other. That means one process always uses the resource and the other never enters the critical section. Correct this in such a way that each process cannot get the resource more than twice in a row. This may yield that only one process can start running from the initial marking.

5 Reachability Analysis for Petri Nets

In the lecture we presented an algorithm to perform a reachability analysis on Petri nets.

- a) Why is it not possible with a reachability algorithm to determine *in general*, whether a given state in a Petri net is reachable or not?
- b) Consider the Petri net N_2 from exercise 2. Is the state $s = (p_1 = 101, p_2 = 99, p_3 = 4)$ reachable from the initial state $s_0 = (1, 0, 0)$ if k = 2? Prove your answer.

Hint: Start with the necessary condition presented in the lecture for the reachability of a state in a weighted Petri net, then eventually explain whether or not the marking is reachable.

6 Coverability tree and graph

Given is the following Petri net N_6 , compute its coverability tree and coverability graph. Deduce which are the unbounded places of this net given the initial marking.

