m ' .BComputer Engineering and

Networks Laborator
Eidgendssische Technische Hochschule Ziirich v

Swiss Federal Institute of Technology Zurich Computer Engineering Group (TEC)

HS 2015 Prof. L. Thiele / R. Jacob

Discrete Event Systems

Solution to Exercise Sheet 13

1 Structural Properties of Petri Nets and Token Game
Given is the following Petri net Ny:

ps3

DP9 P10

ts DPe b7 tr Ds ts

Ps

a) What are the Pre and Post sets of transitions ¢5 and tg and of place ps?
b) Which transitions are enabled after ¢; and to fired?
c) What is the total number of tokens in N; before and after ¢o fired?

d) Play the token game for N7 and construct the reachability graph.

Hint: You may denote the states in such a way that the index indicates the places that
. . - N
hold a token in this state, for example 5, = (1,0,0,0,1,0,0,0,0,0) = s1 5.

a) The Pre and Post sets of a transition are defined as follows:

e Preset: of :={p| (p,t) € F'}
e Post set: te :={p| (t,p) € F'},

b)

d)

where F is the flow set, i.e., the set of place/transition and transition/place arcs. The Pre
and Post sets of a place are defined analogously.

For the Petri net N; we obtain the following sets:

ot5 = {ps,po}, tse = {ps}
otz = {ps}, tg® = {p10, s}
op3 = {ta}, p3e = {t3}

A transition is enabled if all places in its Pre set contain enough tokens. In the case of Ny,
which has only unweighted edges, one token per place suffices. When ¢, fires, it consumes
one token out of each place in the Pre set of to and produces one token on each place in
the Post set of t5. Hence, the firing of ¢t produces one token on place p3 and pg each, the
one on po is consumed. After this, ¢5 is enabled because both pg and ps hold one token.
However, t3 is not enabled because p3 contains a token but pio does not.

Before ¢y fires there are two tokens in N;, one on py and ps each. Directly afterwards,
there are tokens on places p3, pg and ps, hence 3 tokens in total.

A token traverses the upper cycle until ¢ fires. Then one token remains on p3 and waits,
and another one is produced in pg, which enables transition t;. When t5 consumes the
tokens on pg and ps and produces a token on pg, this one traverses the lower cycle until g
is enabled and fired. One token now remains on p; and waits, another is in p;¢ and enables
t3, because there is another token on ps. Then one token traverses the upper cycle again
until ¢5 is enabled, and so on. Hence, this Petri net models two alternating processes.

This Petri net is clearly bounded, thus we can construct its reachability tree. Usually the
states of Petri nets are denoted by vectors such that the -th position in the vector indicates
the number of tokens on place p; of the Petri net, i.e., the marking of the graph. So, for
example, the starting state 5y of Ny, in which the places p; and ps hold one token each, is
denoted by 5 = (1,0,0,0,1,0,0,0,0,0).

For better legibility we denote the states in such a way that the index contains the places

. . . A
that hold a token in this state, for example 5, = (1,0,0,0,1,0,0,0,0,0) = s15.

Then the reachability graph can also be written as,

ty

2 Basic Properties of Petri Nets

Given is the following Petri net Na:

b1

T} t1 t
2]
ts p3
to
Explain the terms boundedness and deadlock-freeness using this example, i.e. for which values of
k € N is the Petri net N3 bounded/unbounded and not deadlock-free?

A Petri net is k-bounded, if there is no fire sequence that makes the number of tokens in
one place grow larger than k. It is obvious that Petri net Ny is 1-bounded if k£ < 1. This holds
because in the initial state there is only one token in the net, and in the case & < 1 no transition
increases the number of tokens in Ny. If k£ > 2, the number of tokens in p; can grow infinitely
large by repeatedly firing ¢1, t3 and t4. So, the Petri net Ns is unbounded for k& > 2.

A Petri net is deadlock free if no fire sequence leads to a state in which no transition is
enabled. If kK = 0, Ny is not deadlock-free. The fire sequence t1,t3,t4 causes the only existing

token to be consumed and hence, there is no enabled transition any more. For k£ > 1, however,
no deadlock can occur.

4

3 Identifying a deadlock

The following Petri net N3 describes two linear processes (Pag/a1/42 and Ppg/pi/p2) sharing

resources Ry and Rs.
c PAo ° PBo

[Jtao

" pan

C J1tBo

ta1l C 1tp1
O
C Jtae C_dtpa
In the following, use M = (Pao,Pa1,Pa2, Pr1, Pr2, Ppo, Pg1, Pp2) as marking vector and

T = (tao,ta1,ta2,tBo,tB1,tB2) as firing vector.

a) Determine the reachability graph of this net for the given initial marking. Explicit one or
several firing sequences leading to a blocking marking (i.e., to a deadlock). What is this
blocking marking?

b) Write down the upstream (W) and downstream (W) incidence matrices and deduce the
incidence matrix A. Use it to compute the marking obtained in the deadlock state (i.e., by
firing the blocking sequence) from the previous question.

¢) Using the upstream incidence matrix W~ how can you prove that this previous state is
a deadlock?

d) Suggest a modification to this Petri net which allows the two linear processes P4 and Pg
to run as intended in the first place.

a) There are an infinite number of blocking sequence: any number of cycles t 4ot a1t 42 and/or
tgotp1tpo terminated by either t 40t o or tgot a0. It can be read directly from the marking
graph below:

(0,0,1,0,0,1,0,0)

H
\E

=
)
o
o
=
—
o
=2

“
b

Y‘

P
[os]
o

My = (1,0,0,1,1,1,0,0) (0,1,0,0,0,0,1,0)

Yzoto

N

b) From the Petri net structure, we get:

001 0 0 0 [1 0 0 0 0 0]
1 0 0 0 0 O 0O 1 0 0 0 O
0O 1.0 0 0 O 0O 0 1 0 0 O
0O 01 0 0 1 1 0 0 0 1 O
V=19 0100 1" =lo101 0 o] ™
0O 0 0 0 0 1 0 0 0 1 0 O
0O 0 01 0 O 0O 0 0 0 1 O
|0 0 0 0 1 0| L0 0 0 0 0 1
[-1 0 1 0 0 0]
1 -1 0 0 0 0
O 1 -1 0 0 O
-1 0 1 0 -1 1
A=W*-W~= 0 -1 1 -1 0 1
o 0o 0 -1 0 1
o 0o o0 1 -1 o0
. 0 0 0 0 1 -1 |
Consider the basic blocking sequence taotpo. It entails:
1 -1 0
1 0 1 1
0 0 0 0
Mdeadlock = MO + A- (])_ = } + _1 = 8
0 1 -1 0
0 0 1 1
0 0 0
As expected, we find again the blocking marking from the reachability graph of the previous

question.

c) A deadlock state is a state at which no transition in enabled. Hence, one can use the
upstream transition matrix W~ to assess whether or not a marking is blocking. It is the
case if and only if the marking vector does not cover (i.e., is strictly bigger than...) any
of W~ column. Otherwise, it implies the transition associated to this column is enabled,
hence this marking is not blocking.

d) In order to avoid that deadlock, we need to forbid both process to run concurrently. This
can be solved easily using a semaphore, as illustrated thereafter:

semaphore

e (e

PR1 PR2
ONFQ

C 1tao C JtBo

‘ PA2 ' PB2
C dtas C1tp2

4 From mutual exclusion to starvation

Your task is to model a system as a Petri net in which two processes want to access a common
exclusive resource is a similar fashion as in Exercise 3. This means that the two processes have to
exclude each other mutually from the concurrent access to the resource (e.g. a critical program
section). More precisely:

1.
2
3.
4
5

a)

b)

A process executes its program.

. In order to enter the critical section, a given mutex variable must be 0.

If this is the case, the process sets the mutex to 1 and executes its critical section.

. When done, it resets the mutex to 0 and enters an uncritical section.

. Then the procedure starts all over again.

Propose a Petri net representing the desired behavior.
Hint: use 5 places and 4 transitions.

In this setting, it may happen that a process starves the other. That means one process
always uses the resource and the other never enters the critical section. Correct this in
such a way that each process cannot get the resource more than twice in a row. This may
yield that only one process can start running from the initial marking.

For each process we introduce two places (p1, p2, ps and py) representing the process
within the normal program execution (pi,ps) as well as in the critical section (ps,ps).
For each process, we have a token indicating which section of the program is currently
executed. Additionally, we introduce a place py representing the mutex variable. If the
mutex variable is 0, then we have a token at pg. We have to make sure that a process can
only enter its critical section if there is a token at the mutex place. The resulting Petri net
looks as follows.

b)

b1 D2

ts C_Jty

p3 P4

Assume that initially, both processes are in an non-critical section (in the Petri net, this is
denoted by a token in place p; and ps respectively). A process can only enter its critical
section (p3/p4) if there is a token at py. In this case, the token is consumed when entering
the critical section. A new mutex token at pg is not created until the process leaves its
critical section. Hence, both processes exclude each other mutually from the concurrent
access to the critical section.

This is a classical benefit of Petri nets over other DES models. It models very efficiently
the sharing of resources, the concurrency of processes, and so on...

In order to avoid starvation of either of the process, one option is to count the number of
execution the each of them, or more precisely the difference between them. Assume that
at initial state, none has been previously run. According to the specification, we can allow
one to the process (say A) to run twice by creating a ”counter-resource” with 2 tokens at
initial state. Running the process A consume one of these tokens and a new token will be
generated in this place on completion of process B. Doing that symmetrically (on each
process) yields the number of executions of each process together...

Lots of rather obscure explanations. Want the net?

ps3 Pa

5 Reachability Analysis for Petri Nets

In the lecture we presented an algorithm to perform a reachability analysis on Petri nets.

a)

b)

b)

Why is it not possible with a reachability algorithm to determine in general, whether a
given state in a Petri net is reachable or not?

Consider the Petri net Ny from exercise 2. Is the state s = (p1 = 101,p; = 99,p3 = 4)
reachable from the initial state so = (1,0,0) if kK = 27 Prove your answer.

Hint: Start with the necessary condition presented in the lecture for the reachability of
a state in a weighted Petri net, then eventually explain whether or not the marking is
reachable.

Petri nets may possess infinite reachability graphs, e.g. No with &k > 2. If the state in
question is actually reachable in such a Petri net, the reachability algorithm will eventually
terminate. If it is not reachable, the algorithm will never be able to determine this with
absolute certainty (cf. halting problem).

We determine the incidence matrix of the Petri net as explained in the lecture.

We are interested in whether the state § = (101,99,4) is reachable from the initial state
$0 = (1,0,0). If the equation system A - f = §— 5 has no solution, we know that the state
§is not reachable from sq. “Unfortunately”,

-1 1 0 2 }Cl 100

1 -1 -1 o0 |- Jf =1 99

0o 0 1 -1 3 4
fa

is satisfiable. To show that §'is reachable from s;, we have to give a firing sequence through
which we get from s to 5. From the last equation of the above equation system, we know
that f3 = f4 + 4. Hence, in the desired firing sequence, f3 is fired four times more than
fa. However, f does not tell us about the firing order. Considering the Petri net, we can
see that — starting from sj — the number of tokens in p; increases by one after firing 1, t3,
and t4 in this order. Repeating this for 203 times yields the state (204,0,0). Firing ¢; for
103 times followed by firing t5 for four times finally yields state §.

6 Coverability tree and graph

Given is the following Petri net Ng, compute its coverability tree and coverability graph. Deduce
which are the unbounded places of this net given the initial marking.

P1 t D2 to

— D

t3 p3

Following the procedure from the lecture note, we can construct the following coverability tree:

(1,w,0)
1y
My = (1,0,0) — (1,w,0) (1,w,0) (Lw,w)
(lw,w) (Lww)
l3
(Lw,w)
One can merge the equivalent node and obtain the coverability graph:
t3
My = (1,0,0) — (1,w,0) — (l,w,w)
> 0
l2,t3 li,ta,t3

It follows that for this net with initial marking (1,0,0), places pa and ps are unbounded.

