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1 Designing Turing Machines

The proposed Turing machine decrements the value of a until a = 0. In each step, it adds a ‘1’
to the output:

1. Move the TM head to the right of a and place a $ sign. We will use this marker to return
to the LSB of a.

2. Look at the LSB of a. If it is ‘1’, we change it to 0 (transition between q1 and q3) and move
to the right. Then, we continue moving to the right until we hit a �, which is changed to
a ‘1’ (transition q4 to q5). Finally, we move back to the LSB of a.

3. If the LSB of a is ‘0’, we search for the first ‘1’ in a from the right (loop on q1 and transition
from q1 to q3).

3.1 If we find a ‘1’, we change it to ‘0’. While moving back to the $ symbol, we change all ‘0’
to ‘1’ (self-loop on q3). Then, we proceed as in point 2 after passing the $ symbol.

3.2 If we don’t find a ‘1’ in a at all (transition q1 to q6), we start the cleanup procedure:
Remove all 0 on the right of the $ symbol, and finally remove the $ symbol itself and move
to the right of u.
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2 Turing again

a) (i) First we write a ‘=’ (as a separator) to the right of the last 1 of b (state 1). Then we
remove the leftmost 1 of a (states 2–4) and write for every 1 of b a 1 to the right of
‘=’ (states 5–10) by replacing every already used 1 with ‘E’. When there are only ‘E’s
to the left of ‘=’ (until ‘×’), we replace them with ‘1’s (states 11–12) and start again.
This is repeated until there are no ‘1’s to the left of ‘×’. When this is the case, we
have calculated the correct number to the right of ‘=’ and we only need to remove all
superfluous symbols (states 13–14).

(ii) A TM operated by the following DFA computes the desired output:
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b) Obviously, every program that can run on a TM of type M1 can also be run on a TM of
type M2, just ignore that additional tape exists. The other directions is a bit harder: The
(limited) TM M1 implements a mapping of a cell index x in M2 to a cell index f(x) in M1

as follows:

f(x) =

{
2x x ≥ 0

2|x| − 1 x < 0 .

To implement this, the TM M1 works in two modi A and B, defined as follows:

Modus A:

M2 → R ⇒ M1 → 2R

M2 → L ⇒ M1 → 2L

Modus B:

M2 → R ⇒ M1 → 2L

M2 → L ⇒ M1 → 2R

M1 starts in modus A. If M1 reaches the left end of the tape and cannot execute going to
the left twice (2L), then M1 goes one step to the right and switches to the other modus
(in some sense, this is a similar construction as mapping the set of integers to the set of
natural numbers).

3 An Unsolvable Problem

a) It is surprisingly easy to prove that your boss is demanding too much. Assume a func-
tion halt(P: Program): boolean which takes a program P as a parameter and returns a
boolean value denoting whether P terminates or not.
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Now consider the following program X which calls the halt() function with itself as an
argument just to do the contrary:

function X() {

if (halt(X))

while(true);

else

return;

}

Obviously, if halt(X) is true X will loop forever, and vice versa.

b) If the simulation stops we can definitively decide that the program does not contain an
endless loop. However, while the simulation is still running, we do not know whether it will
finish in the next two seconds or run forever. Put differently: There is no upper bound on
the execution time of the simulation after which we can be sure that the program contains
an endless loop.

c) As we have seen, it is not possible to predict whether a general program terminates or not.
However, under certain constraints we can solve the halting problem all the same. For
example, consider a restricted language with only one form of a loop (no recursion etc.):

for (init; end; inc) {...}

where init, end and inc are constants in Z. The loop starts with the value init and adds
inc to init in every round until this sum exceeds end if end > 0 or until it falls below
end if end < 0. Obviously, there is a simple way to decide whether a program written in
this language terminates: For every loop, we check whether sgn(inc) = sgn(end), where
sgn(·) is the algebraic sign. If not, the program contains an endless loop (unless init itself
already fulfills the termination criterion which is also easy to verify).

4 How hard is it to add two numbers?

In our last course, slide 35 asked the following question:

Consider the language L = {x = y + z | x, y, z are binary bit-strings satisfying the equation}.
Proof that L is not context-free.

As usual, the proof works by contraction. That is, we first assume that L is context-free,
meaning that the pumping lemma must hold for L. Let’s p be the pumping length, and let’s
consider as string s: 1p0p = 1p0p + 0. Clearly, s belongs to L and |s| ≥ p. The pumping
lemma guarantees that s can be divided into five pieces s = uvxyz such that the following three
conditions hold:

• |vy| ≥ 1

• |vxy| ≤ p

• uvixyiz ∈ L for all i ≥ 0

Now, consider all the possible breakdowns of s:

a) vxy occurs to the left of “=”

b) vxy occurs to the right of “=”

c) vxy contains “=”
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In case a), it is easy to see that s will not belong to the language anymore when pumped.
Indeed, there will be more 1s on the left hand side of the “=”, rendering the addition bogus.
The same reasoning applies for b). Again, because |vxy| ≤ p, the pumping will start adding 1s,
this time, on the right hand side of the equation. Again, rendering it incorrect.

This brings us to c). Clearly, if v or y contains “=”, then s won’t belong to the language
anymore as only one “=” can occur. This means that x must contain the “=” and v = 0k and
y = 1j , where k or j (or both) are non-zero. With such assignments, it is easy to see that the
entire equation cannot be mathematically correct as we are pumping 0s on the left hand side
and 1s on the right hand side.

We have shown that there is no way to divide s into uvxyz so that the pumping lemma holds.
This concludes the proof that L cannot be context-free.

4


