Automata & languages
A primer on the Theory of Computation

Laurent Vanbever
www.vanbever.eu

ETH Zürich (D-ITET)
October, 1 2015
Last week, we learned about closure and equivalence of regular languages
Last week, we learned about **closure** and equivalence of regular languages.

The class of regular languages is closed under the

- union
- concatenation
- star

regular operations
The class of regular languages is closed under the regular operations if L_1 and L_2 are regular, then so are:

- union $L_1 \cup L_2$
- concatenation $L_1 \cdot L_2$
- star L_1^*

...union
...concatenation
...star

...regular operations
Last week, we learned about closure and **equivalence** of regular languages
DFA ≍ NFA

is equivalent to

DFA \equiv\text{ NFA}
We started to look at REX, the third way of representing regular languages.

\[\text{DFA} \approx \text{NFA} \]

REX
Are REX, NFA and DFA all equivalent?

DFA \approx NFA

? REX
We stopped asking ourselves whether all languages are regular

$L_1 \quad \{0^n1^n \mid n \geq 0\}$

$L_2 \quad \{w \mid w \text{ has an equal number of 0s and 1s}\}$

$L_3 \quad \{w \mid w \text{ has an equal number of occurrences of 01 and 10}\}$

(only one of them actually is)
Advanced Automata

Thu Oct 1

1. Equivalence (the end)
 - DFA
 - NFA
 - Regular Expression

2. Non-regular languages

3. Context-free languages
Three tough languages

1) \(L_1 = \{ 0^n1^n \mid n \geq 0 \} \)

2) \(L_2 = \{ w \mid w \) has an equal number of 0s and 1s\} \)

3) \(L_3 = \{ w \mid w \) has an equal number of occurrences of 01 and 10 as substrings\} \)
Three tough languages

1) \(L_1 = \{0^n1^n \mid n \geq 0\} \)

2) \(L_2 = \{w \mid w \text{ has an equal number of 0s and 1s}\} \)

3) \(L_3 = \{w \mid w \text{ has an equal number of occurrences of } 01 \text{ and } 10 \text{ as substrings}\} \)

- In order to fully understand regular languages, we also must understand their limitations!
Pigeonhole principle

• Consider language L, which contains word \(w \in L \).
• Consider an FA which accepts L, with \(n < |w| \) states.
• Then, when accepting w, the FA must visit at least one state twice.
Pigeonhole principle

- Consider language L, which contains word $w \in L$.
- Consider an FA which accepts L, with $n < |w|$ states.
- Then, when accepting w, the FA must visit at least one state twice.

- This is according to the pigeonhole (a.k.a. Dirichlet) principle:
 - If $m > n$ pigeons are put into n pigeonholes, there's a hole with more than one pigeon.
 - That's a pretty fancy name for a boring observation...
Languages with unbounded strings

• Consequently, regular languages with unbounded strings can only be recognized by FA (finite! bounded!) automata if these long strings loop.

• The FA can enter the loop once, twice, ..., and not at all.

• That is, language L contains all \{xz, xyz, xy^2z, xy^3z, ...\}.
Pumping Lemma

• Theorem:

Given a regular language L, there is a number p (the **pumping number**) such that:
any string u in L of length $\geq p$ is pumpable within its first p letters.
Pumping Lemma

• Theorem:

Given a regular language L, there is a number p (the pumping number) such that:
any string u in L of length $\geq p$ is pumpable within its first p letters.

• A string $u \in L$ with $|u| \geq p$ is pumpable if it can be split in 3 parts xyz s.t.:
 – $|y| \geq 1$ (mid-portion y is non-empty)
 – $|xy| \leq p$ (pumping occurs in first p letters)
 – $xy^iz \in L$ for all $i \geq 0$ (can pump y-portion)
Pumping Lemma

• Theorem:

Given a regular language \(L \), there is a number \(p \) (the **pumping number**) such that:
any string \(u \) in \(L \) of length \(\geq p \) is pumpable within its first \(p \) letters.

• A string \(u \in L \) with \(|u| \geq p \) is pumpable if it can be split in 3 parts \(xyz \) s.t.:
 – \(|y| \geq 1 \) (mid-portion \(y \) is non-empty)
 – \(|xy| \leq p \) (pumping occurs in first \(p \) letters)
 – \(xy^iz \in L \) for all \(i \geq 0 \) (can pump \(y \)-portion)

• If there is no such \(p \), then the language is not regular
Pumping Lemma Example

• Let L be the language $\{0^n1^n \mid n \geq 0\}$

• Assume (for the sake of contradiction) that L is regular
• Let p be the pumping length. Let u be the string 0^p1^p.
• Let’s check string u against the pumping lemma:

• “In other words, for all $u \in L$ with $|u| \geq p$ we can write:

 – $u = xyz$ \hspace{1cm} (x is a prefix, z is a suffix)
 – $|y| \geq 1$ \hspace{1cm} (mid-portion y is non-empty)
 – $|xy| \leq p$ \hspace{1cm} (pumping occurs in first p letters)
 – $xy^iz \in L$ for all $i \geq 0$ \hspace{1cm} (can pump y-portion)”
Let’s make the example a bit harder...

- Let \(L \) be the language \(\{w \mid w \text{ has an equal number of 0s and 1s}\} \)

- Assume (for the sake of contradiction) that \(L \) is regular

- Let \(p \) be the pumping length. Let \(u \) be the string \(0^p1^p \).

- Let’s check string \(u \) against the pumping lemma:

 - “In other words, for all \(u \in L \) with \(|u| \geq p \) we can write:
 - \(u = xyz \) (\(x \) is a prefix, \(z \) is a suffix)
 - \(|y| \geq 1 \) (mid-portion \(y \) is non-empty)
 - \(|xy| \leq p \) (pumping occurs in first \(p \) letters)
 - \(xy^iz \in L \) for all \(i \geq 0 \) (can pump \(y \)-portion)”
Now you try…

• Is $L_1 = \{ww \mid w \in (0 \cup 1)^*\}$ regular?

• Is $L_2 = \{1^n \mid n \text{ being a prime number }\}$ regular?
Automata & languages
A primer on the Theory of Computation

Part 1 regular language
Part 2 context-free language
Part 3 turing machine
Automata & languages
A primer on the Theory of Computation

regular language
context-free language
turing machine
Motivation

• Why is a language such as \{0^n1^n \mid n \geq 0\} not regular?!?

• It’s really simple! All you need to keep track is the number of 0’s...

• In this chapter we first study context-free grammars
 – More powerful than regular languages
 – Recursive structure
 – Developed for human languages
 – Important for engineers (parsers, protocols, etc.)
Example

- Palindromes, for example, are not regular.
- But there is a pattern.
Example

- Palindromes, for example, are not regular.
- But there is a pattern.

- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
 - Base case: ε, 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are $0x0$ and $1x1$.
Example

- Palindromes, for example, are not regular.
- But there is a pattern.

- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
 - Base case: ε, 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are $0x0$ and $1x1$.

- Notation: $x \rightarrow \varepsilon | 0 | 1 | 0x0 | 1x1$.
 - Each pipe ("|") is an or, just as in UNIX regexp’s.
 - In fact, all palindromes can be generated from ε using these rules.
Example

- Palindromes, for example, are not regular.
- But there is a pattern.

Q: If you have one palindrome, how can you generate another?
A: Generate palindromes recursively as follows:
 - Base case: ε, 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are $0x0$ and $1x1$.

Notation: $x \to \varepsilon | 0 | 1 | 0x0 | 1x1$.
 - Each pipe ("|") is an or, just as in UNIX regexp’s.
 - In fact, all palindromes can be generated from ε using these rules.

Q: How would you generate 11011011?
Context Free Grammars (CFG): Definition

• Definition: A context free grammar consists of \((V, \Sigma, R, S)\) with:
 – \(V\): a finite set of variables (or symbols, or non-terminals)
 – \(\Sigma\): a finite set of terminals (or the alphabet)
 – \(R\): a finite set of rules (or productions)
 of the form \(v \rightarrow w\) with \(v \in V\), and \(w \in (\Sigma \cup V)^*\)
 (read: “\(v\) yields \(w\)” or “\(v\) produces \(w\)”)
 – \(S \in V\): the start symbol.
Context Free Grammars (CFG): Definition

- Definition: A context free grammar consists of \((V, \Sigma, R, S)\) with:
 - \(V\): a finite set of variables (or symbols, or non-terminals)
 - \(\Sigma\): a finite set set of terminals (or the alphabet)
 - \(R\): a finite set of rules (or productions)
 of the form \(v \Rightarrow w\) with \(v \in V\), and \(w \in (\Sigma \cup V)^*\)
 (read: “\(v\) yields \(w\)” or “\(v\) produces \(w\)”)
 - \(S \in V\): the start symbol.

- Q: What are \((V, \Sigma, R, S)\) for our palindrome example?
Derivations and Language

• Definition: The **derivation symbol** “⇒” (read “1-step derives” or “1-step produces”) is a relation between strings in \((Σ∪V)^*\).

We write \(x⇒y\) if \(x\) and \(y\) can be broken up as \(x = svt\) and \(y = swt\) with \(v⇒w\) being a production in \(R\).
• Definition: The derivation symbol “⇒” (read “1-step derives” or “1-step produces”) is a relation between strings in \((\Sigma \cup \mathcal{V})^*\). We write \(x \Rightarrow y\) if \(x\) and \(y\) can be broken up as \(x = svt\) and \(y = swt\) with \(v \Rightarrow w\) being a production in \(R\).

• Definition: The derivation symbol “⇒*”, (read “derives” or “produces” or “yields”) is a relation between strings in \((\Sigma \cup \mathcal{V})^*\). We write \(x \Rightarrow^* y\) if there is a sequence of 1-step productions from \(x\) to \(y\). I.e., there are strings \(x_i\) with \(i\) ranging from 0 to \(n\) such that \(x = x_0, y = x_n\) and \(x_0 \Rightarrow x_1, x_1 \Rightarrow x_2, x_2 \Rightarrow x_3, \ldots, x_{n-1} \Rightarrow x_n\).
Derivations and Language

• Definition: The derivation symbol "⇒" (read “1-step derives” or “1-step produces”) is a relation between strings in \((\Sigma \cup V)^*\). We write \(x⇒y\) if \(x\) and \(y\) can be broken up as \(x = svt\) and \(y = swt\) with \(v⇒w\) being a production in \(R\).

• Definition: The derivation symbol “⇒∗”, (read “derives” or “produces” or “yields”) is a relation between strings in \((\Sigma \cup V)^*\). We write \(x⇒∗y\) if there is a sequence of 1-step productions from \(x\) to \(y\). I.e., there are strings \(x_i\) with \(i\) ranging from 0 to \(n\) such that \(x = x_0,\ y = x_n\) and \(x_0⇒x_1,\ x_1⇒x_2,\ x_2⇒x_3, \ldots,\ x_{n-1}⇒x_n\).

• Definition: Let \(G\) be a context-free grammar. The context-free language (CFL) generated by \(G\) is the set of all terminal strings which are derivable from the start symbol. Symbolically: \(L(G) = \{w \in \Sigma^* \mid S ⇒* w\}\)
Example: Infix Expressions

- Infix expressions involving \{+, \times, a, b, c, (,)\}
- \(E\) stands for an expression (most general)
- \(F\) stands for factor (a multiplicative part)
- \(T\) stands for term (a product of factors)
- \(V\) stands for a variable: \(a, b,\) or \(c\)

- Grammar is given by:
 - \(E \rightarrow T \mid E + T\)
 - \(T \rightarrow F \mid T \times F\)
 - \(F \rightarrow V \mid (E)\)
 - \(V \rightarrow a \mid b \mid c\)

- Convention: Start variable is the first one in grammar \(E\)
Example: Infix Expressions

• Consider the string \(u \) given by \(a \times b + (c + (a + c)) \)
• This is a valid infix expression. Can be generated from \(E \).

1. A sum of two expressions, so first production must be \(E \Rightarrow E + T \)
2. Sub-expression \(a \times b \) is a product, so a term so generated by sequence \(E + T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow * a \times b + T \)
3. Second sub-expression is a factor only because a parenthesised sum. \[a \times b + T \Rightarrow a \times b + F \Rightarrow a \times b + (E) \Rightarrow a \times b + (E + T) \ldots \]
4. \[E \Rightarrow E + T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow F \times F + T \Rightarrow V \times F + T \Rightarrow a \times F + T \Rightarrow a \times V + T \Rightarrow a \times b + T \Rightarrow a \times b + F \Rightarrow a \times b + (E) \Rightarrow a \times b + (E + T) \Rightarrow a \times b + (T + T) \Rightarrow a \times b + (F + T) \Rightarrow a \times b + (V + T) \Rightarrow a \times b + (c + T) \Rightarrow a \times b + (c + F) \Rightarrow a \times b + (c + (E)) \Rightarrow a \times b + (c + (E + T)) \Rightarrow a \times b + (c + (T + T)) \Rightarrow a \times b + (c + (F + T)) \Rightarrow a \times b + (c + (a + T)) \Rightarrow a \times b + (c + (a + F)) \Rightarrow a \times b + (c + (a + V)) \Rightarrow a \times b + (c + (a + c)) \]
Left- and Right-most derivation

• The derivation on the previous slide was a so-called **left-most derivation**.

• In a **right-most derivation**, the variable most to the right is replaced.

\[E \Rightarrow E + T \Rightarrow E + F \Rightarrow E + (E) \Rightarrow E + (E + T) \Rightarrow \text{etc.} \]
Ambiguity

- There can be a lot of ambiguity involved in how a string is derived.
- Another way to describe a derivation in a unique way is using derivation trees.
Derivation Trees

• In a derivation tree (or parse tree) each node is a symbol. Each parent is a variable whose children spell out the production from left to right. For example $v \rightarrow abcdefg$:

• The root is the start variable.
• The leaves spell out the derived string from left to right.
Derivation Trees

- On the right, we see a derivation tree for our string $a \times b + (c + (a + c))$

- Derivation trees help understanding semantics! You can tell how expression should be evaluated from the tree.
Ambiguity

\[
\begin{align*}
\text{<sentence>} & \rightarrow \text{<action>} | \text{<action>} \text{ with } \text{<subject>} \\
\text{<action>} & \rightarrow \text{<subject>}<\text{activity}> \\
\text{<subject>} & \rightarrow \text{<noun>} | \text{<noun>} \text{ and } \text{<subject>} \\
\text{<activity>} & \rightarrow \text{<verb>} | \text{<verb>}<\text{object}> \\
\text{<noun>} & \rightarrow \text{Hannibal} | \text{Clarice} | \text{rice} | \text{onions} \\
\text{<verb>} & \rightarrow \text{ate} | \text{played} \\
\text{<prep>} & \rightarrow \text{with} | \text{and} | \text{or} \\
\text{<object>} & \rightarrow \text{<noun>} | \text{<noun><prep><object>} \\
\end{align*}
\]

- Clarice played with Hannibal
- Clarice ate rice with onions
- Hannibal ate rice with Clarice

Q: Are there any suspect sentences?
Ambiguity

• A: Consider “Hannibal ate rice with Clarice”

• This could either mean
 – Hannibal and Clarice ate rice *together*.
 – Hannibal ate rice and *ate* Clarice.

• This ambiguity arises from the fact that the sentence has two different parse-trees, and therefore two different interpretations:
Hannibal and Clarice Ate
Hannibal the Cannibal

Hannibal ate rice with Clarice
Ambiguity: Definition

• Definition:

A string x is said to be ambiguous relative the grammar G if there are two essentially different ways to derive x in G.
 – x admits two (or more) different parse-trees
 – equivalently, x admits different left-most [resp. right-most] derivations.

• A grammar G is said to be ambiguous if there is some string x in $L(G)$ which is ambiguous.
Ambiguity: Definition

- **Definition:**

 A string x is said to be ambiguous relative the grammar G if there are two essentially different ways to derive x in G.
 - x admits two (or more) different parse-trees
 - equivalently, x admits different left-most [resp. right-most] derivations.

- A grammar G is said to be ambiguous if there is some string x in $L(G)$ which is ambiguous.

- **Question:** Is the grammar $S \to ab \mid ba \mid aSb \mid bSa \mid SS$ ambiguous?
 - What language is generated?
CFG’s: Proving Correctness

- The recursive nature of CFG’s means that they are especially amenable to correctness proofs.

- For example let’s consider the grammar

 \[G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS) \]

- We claim that \(L(G) = L = \{ x \in \{a,b\}^* \mid n_a(x) = n_b(x) \} \),
 where \(n_a(x) \) is the number of \(a \)'s in \(x \), and \(n_b(x) \) is the number of \(b \)'s.

- \textbf{Proof}: To prove that \(L = L(G) \) is to show both inclusions:

 \textit{i.} \(L \subseteq L(G) \): Every string in \(L \) can be generated by \(G \).

 \textit{ii.} \(L \supseteq L(G) \): \(G \) only generate strings of \(L \).

 - This part is easy, so we concentrate on part i.
Proving $L \subseteq L(G)$

- $L \subseteq L(G)$: Show that every string x with the same number of a’s as b’s is generated by G. Prove by induction on the length $n = |x|$.
- Base case: The empty string is derived by $S \rightarrow \varepsilon$.
- Inductive hypothesis: Assume $n > 0$. Let u be the smallest non-empty prefix of x which is also in L.
 - Either there is such a prefix with $|u| < |x|$, then $x = uv$ whereas $v \in L$ as well, and we can use $S \rightarrow SS$ and repeat the argument.
 - Or $x = u$. In this case notice that u can’t start and end in the same letter. If it started and ended with a then write $x = av$ which means that v must have 2 more b’s than a’s. So somewhere in v the b’s of x catch up to the a’s which means that there’s a smaller prefix in L, contradicting the definition of u as the smallest prefix in L. Thus for some string v in L we have $x = avb$ OR $x = bva$. We can use either $S \rightarrow aSb$ OR $S \rightarrow bSa$.

Designing Context-Free Grammars

• As for regular languages this is a creative process.

• However, if the grammar is the union of simpler grammars, you can design the simpler grammars (with starting symbols S_1, S_2, respectively) first, and then add a new starting symbol/production $S \rightarrow S_1 \mid S_2$.

• If the CFG happens to be regular as well, you can first design the FA, introduce a variable/production for each state of the FA, and then add a rule $x \rightarrow ay$ to the CFG if $\delta(x,a) = y$ is in the FA. If a state x is accepting in FA then add $x \rightarrow \varepsilon$ to CFG. The start symbol of the CFG is of course equivalent to the start state in the FA.

• There are quite a few other tricks. Try yourself...