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Last week was all about

Context-Free Languages



Context-Free Languages

a superset of Regular Languages

Example  {0n1n  | n ≥ 0} is a CFL but not a RL



Context-FreeRegular

DFA/NFA PDA

Language

Machine

As for Regular Languages, 

Context-Free Languages are recognized by “machines”
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Push-Down Automatas are pretty similar to DFAs 

except for…
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Push-Down Automatas are pretty similar to DFAs 

except for… the stack

stack 
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Machine  
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This week, we’ll see that 

computers are not limitless

Alan Turing (1912-1954)

Some problems

by a computer
(no matter its power)

cannot be solved



Pumping lemma for CFL

Today’s plan

Turing Machines

PDA ≍ CFG1

2

3

Thu Oct 14

But before that, we’ll prove  

some extra properties about Context-Free Languages



Even smarter automata…

• Even though the PDA is more powerful than the FA, it is still really stupid,
since it doesn’t understand a lot of important languages.

• Let’s try to make it more powerful by adding a second stack
– You can push or pop from either stack, also there’s still an input string
– Clearly there are quite a few “implementation details”
– It seems at first that it doesn’t help a lot to add a second stack, but…
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Even smarter automata…

• Even though the PDA is more powerful than the FA, it is still really stupid,
since it doesn’t understand a lot of important languages.

• Let’s try to make it more powerful by adding a second stack
– You can push or pop from either stack, also there’s still an input string
– Clearly there are quite a few “implementation details”
– It seems at first that it doesn’t help a lot to add a second stack, but…

• Lemma: A PDA with two stacks is as powerful as a machine which 
operates on an infinite tape (restricted to read/write only “current”
tape cell at the time – known as “Turing Machine”).

– Still that doesn’t sound very exciting, does it…?!?
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Turing Machine

• A Turing Machine (TM) is a device with a finite amount of read-only
“hard” memory (states), and an unbounded amount of read/write 
tape-memory. There is no separate input. Rather, the input is assumed to 
reside on the tape at the time when the TM starts running.

• Just as with Automata, TM’s can either be input/output machines 
(compare with Finite State Transducers), or yes/no decision machines.
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Turing Machine: Example Program

• Sample Rules:
– If read 1, write 0, go right, repeat.
– If read 0, write 1, HALT!
– If read □, write 1, HALT! (the symbol □ stands for the blank cell)

• Let’s see how these rules are carried out on an input with the reverse
binary representation of 47:
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Turing Machine: Formal Definition

• Definition:  A Turing machine (TM) consists of a 7-tuple 
M = (Q, S, G, d, q0, qacc, qrej). 
– Q, S, and q0, are the same as for an FA.
– qacc and qrej are accept and reject states, respectively.
– G is the tape alphabet which necessarily contains the blank symbol x, as 

well as the input alphabet S. 
– d is as follows:

– Therefore given a non-halt state p, and a tape symbol x, d(p,x) = (q,y,D) 
means that TM goes into state q, replaces x by y, and the tape head moves 
in direction D (left or right).
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Turing Machine: Formal Definition

• Definition:  A Turing machine (TM) consists of a 7-tuple 
M = (Q, S, G, d, q0, qacc, qrej). 
– Q, S, and q0, are the same as for an FA.
– qacc and qrej are accept and reject states, respectively.
– G is the tape alphabet which necessarily contains the blank symbol x, as 

well as the input alphabet S. 
– d is as follows:

– Therefore given a non-halt state p, and a tape symbol x, d(p,x) = (q,y,D) 
means that TM goes into state q, replaces x by y, and the tape head moves 
in direction D (left or right).

• A string x is accepted by M if after being put on the tape with the 
Turing machine head set to the left-most position, and letting M run, M
eventually enters the accept state. In this case w is an element of L(M) 
– the language accepted by M.
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Comparison

2/7

Device Separate 
Input?

Read/Write Data 
Structure

Deterministic by 
default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM No 1-way infinite tape.  1 
cell access per step.

Yes
(but will also allow 

crashes)



Turing Machine: Goals

• First Goal of Turing’s Machine: A “computer” which is as powerful as any 
real computer/programming language

– As powerful as C, or “Java++”
– Can execute all the same algorithms / code
– Not as fast though (move the head left and right instead of RAM)
– Historically: A model that can compute anything that a human can compute.  

Before invention of electronic computers the term “computer” actually 
referred to a person who’s line of work is to calculate numerical quantities!

– This is known as the [Church-[Post-]] Turing thesis, 1936.

• Second Goal of Turing’s Machine: And at the same time a model that is 
simple enough to actually prove interesting epistemological results.
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Can a computer compute anything…?!?

• Given collection of dominos, e.g.

• Can you make a list of these dominos (repetitions are allowed) so that the 
top string equals the bottom string, e.g.

• This problem is known as Post-Correspondance-Problem. 
• It is provably unsolvable by computers!
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Also the Turing Machine (the Computer) is limited

• Similary it is undecidable whether 
you can cover a floor with a given 
set of floor tiles (famous examples 
are Penrose tiles or Wang tiles)

• Examples are leading back to Kurt Gödel's 
incompleteness theorem

– “Any powerful enough axiomatic system will 
allow for propositions that are undecidable.”
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Decidability

• A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).
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Decidability

• A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).

• A subset T of a set M is called decidable (or recursive), if the function 
f: M Æ {true, false} with f(m) = true if m ∈ T, is computable.
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Decidability

• A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).

• A subset T of a set M is called decidable (or recursive), if the function 
f: M Æ {true, false} with f(m) = true if m ∈ T, is computable.

• A more general class are the
semi-decidable problems, for which
the algorithm must only terminate
in finite time in either the true or
the false branch, but not the other.
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Halting Problem

• The halting problem is a famous example of an undecidable
(semi-decidable) problem. Essentially, you cannot write a computer 
program that decides whether another computer program ever 
terminates (or has an infinite loop) on some given input.

• In pseudo code, we would like to have:

procedure halting(program, input) {

if program(input) terminates 
then return true 
else return false

}
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Halting Problem: Proof

• Now we write a little wrapper around our halting procedure

procedure test(program) {

if halting(program,program)=true
then loop forever
else return

}

• Now we simply run: test(test)! Does it halt?!?
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Excursion: P and NP

• P is the complexity class containing decision problems which can be 
solved by a Turing machine in time polynomial of the input size.
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Excursion: P and NP

• P is the complexity class containing decision problems which can be 
solved by a Turing machine in time polynomial of the input size.

• NP is the class of decision problems solvable by a non-deterministic 
polynomial time Turing machine such that the machine answers "yes," 
if at least one computation path accepts, and answers “no,” if all 
computation paths reject. 
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Excursion: P and NP

• P is the complexity class containing decision problems which can be 
solved by a Turing machine in time polynomial of the input size.

• NP is the class of decision problems solvable by a non-deterministic 
polynomial time Turing machine such that the machine answers "yes," 
if at least one computation path accepts, and answers “no,” if all 
computation paths reject. 

– Informally, there is a Turing machine which can check the correctness of an 
answer in polynomial time.

– E.g. one can check in polynomial time whether a traveling salesperson path 
connects n cities with less than a total distance d. 
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NP-complete problems

• An important notion in this context is the large set of NP-complete
decision problems, which is a subset of NP and might be informally 
described as the "hardest" problems in NP. 

• If there is a polynomial-time algorithm for even one of them, then there is 
a polynomial-time algorithm for all the problems in NP. 
– E.g. Given a set of n integers, is there a non-empty subset which sums up to 

0? This problem was shown to be NP-complete.
– Also the traveling salesperson problem is NP-complete, or Tetris, or 

Minesweeper.
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P vs. NP

• One of the big questions in Math and CS: Is P = NP?
– Or are there problems which cannot be solved in polynomial time.
– Big practical impact (e.g. in Cryptography).
– One of the seven $1M problems by the Clay Mathematics Institute of 

Cambridge, Massachusetts.
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Summary (Chomsky Hierarchy)
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Turing-Machine
Computer

Context-Free
Programming Language

Regular
Cola Machine

Undecidable
“God”



Bedtime Reading

If you’re leaning towards “human = machine”

If you’re leaning towards “human ⊃machine” 
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