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7.11 Competitive Lists with Move-to-Front

Consider a list L containing n items, for example the collection of your favorite
records. Whenever an item x in L is requested the list is scanned from the front
until x is found. Therefore the cost of accessing x is k if x is the kth item in the
list. In order to better respond to subsequent requests, the position of any two
adjacent items in L may be swapped. Such a swap also causes cost 1. Requests
to items in the list L arrive in an on-line fashion.

The on-line algorithm Move-to-Front (M2F) adheres to the following simple
rule: Whenever item x is requested, M2F moves x to the front. The cost to
access x when x is the the kth item in L is thus k for the initial scan, and k− 1
swaps to move it to the front, i.e., the total cost is 2k− 1. Note that M2F does
not change the relative order of items different from x. As usual, we would like
to know how M2F compares to an optimal off-line algorithm OPT that knows
the entire sequence of requests in advance. In the remainder of this section we
establish the following theorem.

Theorem 7.16. The algorithm Move-to-Front is strictly 4-competitive.

Denote by OPT an optimal algorithm. We keep track of two lists LM2F and
LOPT , i.e., the list L as it is maintained by M2F and OPT, correspondingly.
Initially LM2F = LOPT = L. For the two lists LM2F and LOPT , an inversion
is a pair of items (x, y) which appear in different order in LM2F than in LOPT .

Figure 7.6: The inversion (x, y) between LM2F and LOPT .

Our competitive analysis of M2F is carried out using the potential method.
The potential function Φ is defined as follows.

Φ := 2 · (number of inversions between LM2F and LOPT )

The potential method. A potential function Φ is a tool used in amortized
analysis. The idea is to model the amortized cost amortized(op) of some oper-
ation op by

amortized(op) := cost(op) + ∆Φ(op),

where cost(op) is the actual cost of op, and ∆Φ(op) is the change of potential
caused by op. For the competitive analysis of an on-line algorithm A, the total
actual cost is bounded by A’s the total amortized cost.

Initially the potential Φ = 0 since the lists are equal. In every step, Φ is non-
negative since the number of inversions is non-negative. Thus the total cost of
M2F is upper bounded by the total amortized cost of M2F. It therefore suffices
to show that M2F’s amortized cost is at most 4 times the cost of OPT. We will
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in fact establish this bound after every request was handled, which implies that
the bound also holds for the entire request sequence.

Fix a sequence of requests and a request r in that sequence, and denote by
x the item requested by r. Denote by j and k the position of x in LOPT and
LM2F before handling r, respectively.

Figure 7.7: Item x in LM2F and LOPT before handling request r.

The cost amortized(r) for M2F consists of the actual cost(r) and the change
in the potential function ∆Φ(r). Recall that cost(r) = 2k − 1. The change
of potential is completely determined by the inversions that are created or de-
stroyed by the list maintenance performed by M2F and OPT, in other words
∆Φ(r) = ∆ΦM2F + ∆ΦOPT .

Let us first look at the contribution ∆ΦM2F to ∆Φ caused by M2F’s list
maintenance. Since M2F does not change the relative order of non-requested
items, all affected inversions must involve item x. Furthermore x is only swapped
with items y that precede x in LM2F . Let y be an item preceding x in LM2F

before M2F’s list maintenance. We say that item y is bad if y precedes x also in
LOPT , otherwise y is good. If y is bad, then a new inversion is created, otherwise
an inversion is destroyed. There are at most j − 1 bad items, and therefore at
least (k− 1)− (j− 1) good items. Recalling that Φ counts each inversion twice,
we conclude that

∆ΦM2F ≤ 2 ·
(
j − 1−

(
(k − 1)− (j − 1)

))
= 4j − 2k − 2.

We still need to account for the list maintenance of OPT. Denote by s the
number of swap-operations performed by OPT while handling request r. Every
such swap increases costOPT (r) of the optimal algorithm by exactly 1. Recall
that the cost for finding item x in LOPT is j, and therefore

costOPT (t) = j + s

Figure 7.8: Items x, y in LM2F and LOPT before handling request r.
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Furthermore, every swap performed by OPT creates at most one new inver-
sion. The contribution ∆ΦOPT to ∆Φ is thus at most 2s, and we can bound
amortized(r) as

amortized(r) = cost(r) + ∆ΦM2F + ∆ΦOPT

≤ 2k − 1 + 4j − 2k − 2 + 2s

= 4j − 3 + 2s

< 4j + 2s

≤ 4 · (j + s) = 4 · costOPT (r).
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