
7.11. COMPETITIVE LISTS WITH MOVE-TO-FRONT 63

7.11 Competitive Lists with Move-to-Front

Consider a list L containing n items, for example the collection of your favorite
records. Whenever an item x in L is requested the list is scanned from the front
until x is found. Therefore the cost of accessing x is k if x is the kth item in the
list. In order to better respond to subsequent requests, the position of any two
adjacent items in L may be swapped. Such a swap also causes cost 1. Requests
to items in the list L arrive in an on-line fashion.

The on-line algorithm Move-to-Front (M2F) adheres to the following simple
rule: Whenever item x is requested, M2F moves x to the front. The cost to
access x when x is the the kth item in L is thus k for the initial scan, and k− 1
swaps to move it to the front, i.e., the total cost is 2k− 1. Note that M2F does
not change the relative order of items different from x. As usual, we would like
to know how M2F compares to an optimal off-line algorithm OPT that knows
the entire sequence of requests in advance. In the remainder of this section we
establish the following theorem.

Theorem 7.16. The algorithm Move-to-Front is strictly 4-competitive.

Denote by OPT an optimal algorithm. We keep track of two lists LM2F and
LOPT , i.e., the list L as it is maintained by M2F and OPT, correspondingly.
Initially LM2F = LOPT = L. For the two lists LM2F and LOPT , an inversion
is a pair of items (x, y) which appear in different order in LM2F than in LOPT .

Figure 7.6: The inversion (x, y) between LM2F and LOPT .

Our competitive analysis of M2F is carried out using the potential method.
The potential function Φ is defined as follows.

Φ := 2 · (number of inversions between LM2F and LOPT )

The potential method. A potential function Φ is a tool used in amortized
analysis. The idea is to model the amortized cost amortized(op) of some oper-
ation op by

amortized(op) := cost(op) + ∆Φ(op),

where cost(op) is the actual cost of op, and ∆Φ(op) is the change of potential
caused by op. For the competitive analysis of an on-line algorithm A, the total
actual cost is bounded by A’s the total amortized cost.

Initially the potential Φ = 0 since the lists are equal. In every step, Φ is non-
negative since the number of inversions is non-negative. Thus the total cost of
M2F is upper bounded by the total amortized cost of M2F. It therefore suffices
to show that M2F’s amortized cost is at most 4 times the cost of OPT. We will



64

in fact establish this bound after every request was handled, which implies that
the bound also holds for the entire request sequence.

Fix a sequence of requests and a request r in that sequence, and denote by
x the item requested by r. Denote by j and k the position of x in LOPT and
LM2F before handling r, respectively.

Figure 7.7: Item x in LM2F and LOPT before handling request r.

The cost amortized(r) for M2F consists of the actual cost(r) and the change
in the potential function ∆Φ(r). Recall that cost(r) = 2k − 1. The change
of potential is completely determined by the inversions that are created or de-
stroyed by the list maintenance performed by M2F and OPT, in other words
∆Φ(r) = ∆ΦM2F + ∆ΦOPT .

Let us first look at the contribution ∆ΦM2F to ∆Φ caused by M2F’s list
maintenance. Since M2F does not change the relative order of non-requested
items, all affected inversions must involve item x. Furthermore x is only swapped
with items y that precede x in LM2F . Let y be an item preceding x in LM2F

before M2F’s list maintenance. We say that item y is bad if y precedes x also in
LOPT , otherwise y is good. If y is bad, then a new inversion is created, otherwise
an inversion is destroyed. There are at most j − 1 bad items, and therefore at
least (k− 1)− (j− 1) good items. Recalling that Φ counts each inversion twice,
we conclude that

∆ΦM2F ≤ 2 ·
(
j − 1−

(
(k − 1)− (j − 1)

))
= 4j − 2k − 2.

We still need to account for the list maintenance of OPT. Denote by s the
number of swap-operations performed by OPT while handling request r. Every
such swap increases costOPT (r) of the optimal algorithm by exactly 1. Recall
that the cost for finding item x in LOPT is j, and therefore

costOPT (t) = j + s

Figure 7.8: Items x, y in LM2F and LOPT before handling request r.



7.11. COMPETITIVE LISTS WITH MOVE-TO-FRONT 65

Furthermore, every swap performed by OPT creates at most one new inver-
sion. The contribution ∆ΦOPT to ∆Φ is thus at most 2s, and we can bound
amortized(r) as

amortized(r) = cost(r) + ∆ΦM2F + ∆ΦOPT

≤ 2k − 1 + 4j − 2k − 2 + 2s

= 4j − 3 + 2s

< 4j + 2s

≤ 4 · (j + s) = 4 · costOPT (r).


	Competitive Lists with Move-to-Front

