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Overview

• Introduction

• Spin Locks

– Test-and-Set & Test-and-Test-and-Set

– Backoff lock

– Queue locks
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Introduction: From Single-Core to Multicore Computers

memory

cpu
cache

BusBus

shared memory

cachecache

Server architecture: 

The Shared Memory 

Desktop Computer: 

Single core
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The Shared Memory 

Multiprocessor (SMP)

All cores on 

the same chip

cache

BusBus

shared memory

cachecache



Sequential Computation

memory

thread

11/4

object
object



Concurrent Computation

shared memory

multiple

threads

(processes)
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object
object



Fault Tolerance & Asynchrony

threads
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• Why fault-tolerance?

– Even if processes do not die, there are “near-death experiences”

• Sudden unpredictable delays:

– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)



Example: Parallel Primality Testing

• Challenge

– Print all primes from 1 to 1010

• Given

– Ten-core multiprocessor

– One thread per processor

• Goal

– Get ten-fold speedup (or close)
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– Get ten-fold speedup (or close)

• Naïve Approach

– Split the work evenly

– Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9

Problems with

this approach?



Issues

• Higher ranges have fewer primes

• Yet larger numbers are harder to test

• Thread workloads

– Uneven

– Hard to predict

• Need dynamic load balancing

19
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• Better approach

– Shared counter!

– Each thread takes a number

17

18

19



Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) { 

j = counter.getAndIncrement();
if(isPrime(j))

print(j);

Procedure Executed at each Thread

Shared counter object
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print(j);
}

}

Increment counter & test 

if return value is prime



Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {
return value++;

}
}
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}

What’s the problem with 

this implementation?



value… 1

read 

1

write 

2

read 

2

write 

3

2 3 2

Problem
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time

1

read 

1

2 2 3

write 

2



Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;

These steps must 

be atomic!
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return temp;
}

}

be atomic!

Recall: We can use Read-Modify-

Write (RMW) instructions!

We have to guarantee 

mutual exclusion



Model

• The model in this part is slightly more complicated

– However, we still focus on principles

• What remains the same?

– Multiple instruction multiple data (MIMD) architecture

– Each thread/process has its own code and local variables 

I.e., multiprocessors
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• What is new?

– There is a shared memory that all threads can access

– Typically, communication runs over a shared bus

(alternatively, there may be several channels) 

– Communication contention

– Communication latency

– Each thread has a local cache

memory



cache cachecache

Local 

variables

Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) {
j = counter.getAndIncrement();
if(isPrime(j))
print(j);

}
}

Model: Where Things Reside

Code
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cache

BusBus

cachecache

1
shared 

memory

E.g., the shared

counter is here



Revisiting Mutual Exclusion

• We need mutual exclusion for our counter

• We are now going to study mutual exclusion from a different angle

– Focus on performance, not just correctness and progress

• We will begin to understand how performance depends on our software

properly utilizing the multiprocessor machine’s hardware,

and get to know a collection of locking algorithms!
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• What should you do if you can’t get a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

Our focus



Basic Spin-Lock

Lock introduces 

sequential bottleneck

� No parallelism!

Lock suffers 

from contention

Huh?
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CS

Resets lock 
upon exit

spin 
lock

critical 
section

..
.

from contention



Reminder: Test&Set

• Boolean value

• Test-and-set (TAS)

– Swap true with current value

– Return value tells if prior value was true or false

• Can reset just by writing false

• Also known as “getAndSet”
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Reminder: Test&Set

public class AtomicBoolean {
private boolean value;

public synchronized boolean getAndSet() {
boolean prior = this.value;
this.value = true; 
return prior;

} Get current value and set 

java.util.concurrent.atomic
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}

}

Get current value and set 

value to true



Test&Set Locks

• Locking

– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS

– If result is false, you win

– If result is true, you lose 

• Release lock by writing false
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• Release lock by writing false



Test&Set Lock

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (state.getAndSet()) {}

}

public void unlock() {

Keep trying until 

lock acquired

Lock state is AtomicBoolean
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public void unlock() {
state.set(false);

}
} Release lock by resetting state to false



Performance

• Experiment

– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?

11/21

ti
m

e

threads



Test&Test&Set Locks

• How can we improve TAS?

• A crazy idea: Test before you test and set!

• Lurking stage

– Wait until lock “looks” free

– Spin while read returns true (i.e., the lock is taken)

• Pouncing state
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• Pouncing state

– As soon as lock “looks” available

– Read returns false (i.e., the lock is free)

– Call TAS to acquire the lock

– If TAS loses, go back to lurking



Test&Test&Set Lock

public class TTASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (true) {

while(state.get()) {}
if(!state.getAndSet())

return;

Wait until lock looks free

Then try to acquire it
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return;
}

}

public void unlock() {
state.set(false);

}
}

Then try to acquire it



Performance

• Both TAS and TTAS do the same thing (in our old model)

• So, we would expect basically the same results

ti
m

e

TAS lock TTAS lock
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• Why is TTAS so much better than TAS? Why are both far from ideal?

threads

ideal

ti
m

e

TAS lock TTAS lock



Opinion

• TAS & TTAS locks

– are provably the same (in theory)

– except they aren’t (in reality)

• Obviously, it must have something to do with the model…

• Let’s take a closer look at our new model and try to find a reasonable 

explanation!
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Bus-Based Architectures

Shared bus

• Broadcast medium

• One broadcaster at a time

• Processors (and memory) “snoop”

Per-processor caches

• Small

• Fast: 1 or 2 cycles

• Address and state information
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Bus

cache

memory

cachecache

Random access memory 

(tens of cycles)



Jargon Watch

• Load request

– When a thread wants to access data, it issues a load request

• Cache hit

– The thread found the data in its own cache

• Cache miss

– The data is not found in the cache

– The thread has to get the data from memory
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– The thread has to get the data from memory



Load Request

• Thread issues load request and memory responds

data…?
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cache

memory

cachecache

datadata

Bus

Got your data 

right here! 



Another Load Request

data…?I got data!

• Another thread wants to access the same data. Get a copy from the cache!
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BusBus

memory

cachecachedata

data



Modify Cached Data

• Both threads now have the data in their cache

• What happens if the red thread now modifies the data…?
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memory

cachedata

What’s up with the other copies?

data

data

Bus



Cache Coherence

• We have lots of copies of data

– Original copy in memory 

– Cached copies at processors

• Some processor modifies its own copy

– What do we do with the others?

– How to avoid confusion?
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Write-Back Caches

• Accumulate changes in cache

• Write back when needed

– Need the cache for something else

– Another processor wants it

• On first modification

– Invalidate other entries

– Requires non-trivial protocol … 
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– Requires non-trivial protocol … 

• Cache entry has three states:

– Invalid: contains raw bits

– Valid: I can read but I can’t write

– Dirty: Data has been modified

– Intercept other load requests

– Write back to memory before reusing cache



Invalidate

• Let’s rewind back to the moment when the red processor updates its 

cached data

• It broadcasts an invalidation message � Other processor invalidates its 

cache!

Cache loses

read 

permission
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BusBus

memory

cachedata

data

cache

permission



Invalidate

• Memory provides data only if not present in any cache, so there is no need 

to change it now (this is an expensive operation!)

• Reading is not a problem � The threads get the data from the red process
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Bus

memory

cachedata

data

cache



Mutual Exclusion

• What do we want to optimize?

1. Minimize the bus bandwidth that the spinning threads use

2. Minimize the lock acquire/release latency

3. Minimize the latency to acquire the lock if the lock is idle
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TAS vs. TTAS 

• TAS invalidates cache lines

• Spinners

– Always go to bus

• Thread wants to release lock

– delayed behind spinners!!!

• TTAS waits until lock “looks” free

This is why TAS 

performs so poorly…
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• TTAS waits until lock “looks” free

– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released

– Invalidation storm …

Huh?



Local Spinning while Lock is Busy

• While the lock is held, all contenders spin in their caches, rereading 

cached data without causing any bus traffic
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Bus

memory

busybusybusy

busy



On Release

TAS! TAS!

• The lock is released. All spinners take a cache miss and call Test&Set!  
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Bus

memory

free

free

invalidinvalid



Time to Quiescence

• Every process experiences a cache miss

– All state.get() satisfied sequentially

• Every process does TAS

– Caches of other processes are invalidated

• Eventual quiescence (“silence”) after

acquiring the lock

• The time to quiescence increases

P1

P2

Pn
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• The time to quiescence increases

linearly with the number of processors for a bus architecture!

ti
m

e

threads



Mystery Explained

ti
m

e

TAS lock TTAS lock

• Now we understand why the TTAS lock performs much better than the 

TAS lock, but still much worse than an ideal lock!
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threads

ideal

• How can we do better?



Introduce Delay

• If the lock looks free, but I fail to get it, there must be lots of contention

• It’s better to back off than to collide again!

• Example: Exponential Backoff

• Each subsequent failure doubles expected waiting time
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2d4d

waiting time
d

spin lock



Exponential Backoff Lock

public class Backoff implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
int delay = MIN_DELAY;
while (true) {

while(state.get()) {}
if (!lock.getAndSet())

Fix minimum delay

Back off for 
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if (!lock.getAndSet())
return;

sleep(random() % delay);
if (delay < MAX_DELAY)

delay = 2 * delay;
}

}

// unlock() remains the same

}

Back off for 

random duration

Double maximum 

delay until an upper 

bound is reached



Backoff Lock: Performance

• The backoff lock outperforms the TTAS lock!

• But it is still not ideal…

ti
m

e

TTAS lock
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threads

ideal

ti
m

e

TAS lock TTAS lock

Backoff lock



Backoff Lock: Evaluation

• Good

– Easy to implement

– Beats TTAS lock

• Bad

– Must choose parameters carefully

– Not portable across platforms
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• How can we do better?

• Avoid useless invalidations

– By keeping a queue of threads

• Each thread

– Notifies next in line

– Without bothering the others



ALock: Initially

next
idle

• The Anderson queue lock (ALock) is an array-based queue lock

• Threads share an atomic tail field (called next)
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flags

T F F F F F F F



ALock: Acquiring the Lock

next
acquired

• To acquire the lock, each thread atomically increments the tail field

• If the flag is true, the lock is acquired

• Otherwise, spin until the flag is true

The lock 

is mine!
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flags

T F F F F F F F



ALock: Contention

next
acquired

• If another thread wants to acquire the lock, it applies get&increment

• The thread spins because the flag is false

acquiring
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flags

T F F F F F F F



ALock: Releasing the Lock

next
released

• The first thread releases the lock by setting the next slot to true

• The second thread notices the change and gets the lock

acquired The lock 

is mine!
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flags

T T F F F F F F



ALock

public class Alock implements Lock {
boolean[] flags = {true,false,...,false};
AtomicInteger next = new AtomicInteger(0);
ThreadLocal<Integer> mySlot;

public void lock() {
mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {}

One flag per thread

Thread-local variable

Take the next slot
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while (!flags[mySlot % n]) {}
flags[mySlot % n] = false;

}

public void unlock() {
flags[(mySlot+1) % n] = true;

}
}

Take the next slot

Tell next thread to go



ALock: Performance

• Shorter handover than backoff

• Curve is practically flat

• Scalable performance

• FIFO fairness
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threads

ideal

ti
m

e

TAS lock TTAS lock

ALock



ALock: Evaluation

• Good

– First truly scalable lock

– Simple, easy to implement

• Bad

– One bit per thread

– Unknown number of threads?
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ALock: Alternative Technique

• The threads could update own flag and spin on their predecessor’s flag

acquiring acquiring

i i+1
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• This is basically what the CLH lock does, but using a linked list instead of 

an array

• Is this a good idea?

flags

… F F F F F F F

i

i-1

i+1

i

Not discussed 

in this lecture



NUMA Architectures

• Non-Uniform Memory Architecture

• Illusion

– Flat shared memory

• Truth

– No caches (sometimes)

– Some memory regions faster than others
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Spinning on local memory is fast:        Spinning on remote memory is slow:



MCS Lock

• Idea

– Use a linked list instead of an array � small, constant-sized space

– Spin on own flag, just like the Anderson queue lock

• The space usage

– L = number of locks

– N = number of threads

11/54

– N = number of threads

• of the Anderson lock is O(LN)

• of the MCS lock is O(L+N)



MCS Lock: Initially

tail

idle
Queue tail

• The lock is represented as a linked list of QNodes, one per thread

• The tail of the queue is shared among all threads
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MCS Lock: Acquiring the Lock

• To acquire the lock, the thread places its QNode at the tail of the list

by swapping the tail to its QNode

• If there is no predecessor, the thread acquires the lock

Swap

The lock 

is mine!

acquired

tail
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false

(allocate QNode)

Swap

false = lock 

is free



acquiring

• If another thread wants to acquire the lock, it again applies swap

• The thread spins on its own QNode because there is a predecessor

Swap

MCS Lock: Contention

tail

acquired
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true

Swap

false



• The first thread releases the lock by setting its successor’s QNode to false

MCS Lock: Releasing the Lock

The lock 

is mine!

acquired

tail

released
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falsefalse



MCS Queue Lock

public class QNode {
boolean locked = false;
QNode next = null;

}
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MCS Queue Lock

public class MCSLock implements Lock {
AtomicReference tail;

public void lock() {
QNode qnode = new QNode();
QNode pred = tail.getAndSet(qnode);
if (pred != null) {

qnode.locked = true; Add my node to the tail

11/60

qnode.locked = true;
pred.next = qnode;
while (qnode.locked) {}

}
}

...

Fix if queue was 

non-empty



• If there is a successor, unlock it.  But, be cautious!

• Even though a QNode does not have a successor, the purple thread knows 

that another thread is active because tail does not point to its QNode!

MCS Lock: Unlocking

acquiring

Swap tail

releasing
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Waiting…

true

Swap

false



• As soon as the pointer to the successor is set, the purple thread can 

release the lock

MCS Lock: Unlocking Explained

The lock 

is mine!

Set my successor’s 

QNode to false!

acquired

tail

released
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falsefalse



MCS Queue Lock

... 

public void unlock() {
if (qnode.next == null) {

if (tail.CAS(qnode, null))
return;

while (qnode.next == null) {}
}

Missing successor?

If really no successor, 

tail = null

Otherwise, wait for 
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}
qnode.next.locked = false;

}
}

Otherwise, wait for 

successor to catch up

Pass lock to successor



Abortable Locks

• What if you want to give up waiting for a lock?

• For example

– Time-out

– Database transaction aborted by user

• Back-off Lock

– Aborting is trivial: Just return from lock() call!
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– Aborting is trivial: Just return from lock() call!

– Extra benefit: No cleaning up, wait-free, immediate return

• Queue Locks

– Can’t just quit: Thread in line behind will starve

– Need a graceful way out…



Problem with Queue Locks

spinning

truetruefalse

acquired aborted
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spinning

truefalsefalse

released
…?



Abortable MCS Lock

• A mechanism is required to recognize and remove aborted threads

– A thread can set a flag indicating that it aborted

– The predecessor can test if the flag is set

– If the flag is set, its new successor is the successor’s successor

– How can we handle concurrent aborts? This is not discussed in this lecture

Spinning on 

remote object…?!
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spinning

truetruefalse

acquired aborted



Composite Locks

• Queue locks have many advantages

– FIFO fairness, fast lock release, low contention

but require non-trivial protocols to handle aborts (and recycling of nodes)

• Backoff locks support trivial time-out protocols

but are not scalable and may have slow lock release times

• A composite lock combines the best of both approaches!
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• A composite lock combines the best of both approaches!

• Short fixed-sized array of lock nodes

• Threads randomly pick a node and try

to acquire it

• Use backoff mechanism to acquire a node

• Nodes build a queue

• Use a queue lock mechanism to acquire the lock



One Lock To Rule Them All?

• TTAS+Backoff, MCS, Abortable MCS…

• Each better than others in some way

• There is not a single best solution

• Lock we pick really depends on

– the application

– the hardware

– which properties are important
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– which properties are important



Handling Multiple Threads

• Adding threads should not lower the throughput

– Contention effects can mostly be fixed by Queue locks

• Adding threads should increase throughput

– Not possible if the code is inherently sequential

– Surprising things are parallelizable!
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• How can we guarantee consistency if there are many threads?



Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks 

– Mostly easy to reason about

– This is the standard Java model (synchronized blocks and methods)

• Problem: Sequential bottleneck

– Threads “stand in line”
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– Threads “stand in line”

– Adding more threads does not improve throughput

– We even struggle to keep it from getting worse…

• So why do we even use a multiprocessor?

– Well, some applications are inherently parallel…

– We focus on exploiting non-trivial parallelism



Credits

• The TTAS lock is due to Kruskal, Rudolph, and Snir, 1988.

• Tom Anderson invented the ALock, 1990.

• The MCS lock is due to Mellor-Crummey and Scott, 1991.
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That’s all!
Questions & Comments?
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