
Locking
Part 2, Chapter 11

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Overview

• Introduction

• Spin Locks

– Test-and-Set & Test-and-Test-and-Set

– Backoff lock

– Queue locks

11/2

Introduction: From Single-Core to Multicore Computers

memory

cpu
cache

BusBus

shared memory

cachecache

Server architecture:

The Shared Memory

Desktop Computer:

Single core

11/3

The Shared Memory

Multiprocessor (SMP)

All cores on

the same chip

cache

BusBus

shared memory

cachecache

Sequential Computation

memory

thread

11/4

object
object

Concurrent Computation

shared memory

multiple

threads

(processes)

11/5

object
object

Fault Tolerance & Asynchrony

threads

11/6

• Why fault-tolerance?

– Even if processes do not die, there are “near-death experiences”

• Sudden unpredictable delays:

– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)

Example: Parallel Primality Testing

• Challenge

– Print all primes from 1 to 1010

• Given

– Ten-core multiprocessor

– One thread per processor

• Goal

– Get ten-fold speedup (or close)

11/7

– Get ten-fold speedup (or close)

• Naïve Approach

– Split the work evenly

– Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9

Problems with

this approach?

Issues

• Higher ranges have fewer primes

• Yet larger numbers are harder to test

• Thread workloads

– Uneven

– Hard to predict

• Need dynamic load balancing

19

11/8

• Better approach

– Shared counter!

– Each thread takes a number

17

18

19

Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) {

j = counter.getAndIncrement();
if(isPrime(j))

print(j);

Procedure Executed at each Thread

Shared counter object

11/9

print(j);
}

}

Increment counter & test

if return value is prime

Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {
return value++;

}
}

11/10

}

What’s the problem with

this implementation?

value… 1

read

1

write

2

read

2

write

3

2 3 2

Problem

11/11

time

1

read

1

2 2 3

write

2

Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;

These steps must

be atomic!

11/12

return temp;
}

}

be atomic!

Recall: We can use Read-Modify-

Write (RMW) instructions!

We have to guarantee

mutual exclusion

Model

• The model in this part is slightly more complicated

– However, we still focus on principles

• What remains the same?

– Multiple instruction multiple data (MIMD) architecture

– Each thread/process has its own code and local variables

I.e., multiprocessors

11/13

• What is new?

– There is a shared memory that all threads can access

– Typically, communication runs over a shared bus

(alternatively, there may be several channels)

– Communication contention

– Communication latency

– Each thread has a local cache

memory

cache cachecache

Local

variables

Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) {
j = counter.getAndIncrement();
if(isPrime(j))
print(j);

}
}

Model: Where Things Reside

Code

11/14

cache

BusBus

cachecache

1
shared

memory

E.g., the shared

counter is here

Revisiting Mutual Exclusion

• We need mutual exclusion for our counter

• We are now going to study mutual exclusion from a different angle

– Focus on performance, not just correctness and progress

• We will begin to understand how performance depends on our software

properly utilizing the multiprocessor machine’s hardware,

and get to know a collection of locking algorithms!

11/15

• What should you do if you can’t get a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

Our focus

Basic Spin-Lock

Lock introduces

sequential bottleneck

� No parallelism!

Lock suffers

from contention

Huh?

11/16

CS

Resets lock
upon exit

spin
lock

critical
section

..
.

from contention

Reminder: Test&Set

• Boolean value

• Test-and-set (TAS)

– Swap true with current value

– Return value tells if prior value was true or false

• Can reset just by writing false

• Also known as “getAndSet”

11/17

Reminder: Test&Set

public class AtomicBoolean {
private boolean value;

public synchronized boolean getAndSet() {
boolean prior = this.value;
this.value = true;
return prior;

} Get current value and set

java.util.concurrent.atomic

11/18

}

}

Get current value and set

value to true

Test&Set Locks

• Locking

– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS

– If result is false, you win

– If result is true, you lose

• Release lock by writing false

11/19

• Release lock by writing false

Test&Set Lock

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (state.getAndSet()) {}

}

public void unlock() {

Keep trying until

lock acquired

Lock state is AtomicBoolean

11/20

public void unlock() {
state.set(false);

}
} Release lock by resetting state to false

Performance

• Experiment

– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?

11/21

ti
m

e

threads

Test&Test&Set Locks

• How can we improve TAS?

• A crazy idea: Test before you test and set!

• Lurking stage

– Wait until lock “looks” free

– Spin while read returns true (i.e., the lock is taken)

• Pouncing state

11/22

• Pouncing state

– As soon as lock “looks” available

– Read returns false (i.e., the lock is free)

– Call TAS to acquire the lock

– If TAS loses, go back to lurking

Test&Test&Set Lock

public class TTASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (true) {

while(state.get()) {}
if(!state.getAndSet())

return;

Wait until lock looks free

Then try to acquire it

11/23

return;
}

}

public void unlock() {
state.set(false);

}
}

Then try to acquire it

Performance

• Both TAS and TTAS do the same thing (in our old model)

• So, we would expect basically the same results

ti
m

e

TAS lock TTAS lock

11/24

• Why is TTAS so much better than TAS? Why are both far from ideal?

threads

ideal

ti
m

e

TAS lock TTAS lock

Opinion

• TAS & TTAS locks

– are provably the same (in theory)

– except they aren’t (in reality)

• Obviously, it must have something to do with the model…

• Let’s take a closer look at our new model and try to find a reasonable

explanation!

11/25

Bus-Based Architectures

Shared bus

• Broadcast medium

• One broadcaster at a time

• Processors (and memory) “snoop”

Per-processor caches

• Small

• Fast: 1 or 2 cycles

• Address and state information

11/26

Bus

cache

memory

cachecache

Random access memory

(tens of cycles)

Jargon Watch

• Load request

– When a thread wants to access data, it issues a load request

• Cache hit

– The thread found the data in its own cache

• Cache miss

– The data is not found in the cache

– The thread has to get the data from memory

11/27

– The thread has to get the data from memory

Load Request

• Thread issues load request and memory responds

data…?

11/28

cache

memory

cachecache

datadata

Bus

Got your data

right here!

Another Load Request

data…?I got data!

• Another thread wants to access the same data. Get a copy from the cache!

11/29

BusBus

memory

cachecachedata

data

Modify Cached Data

• Both threads now have the data in their cache

• What happens if the red thread now modifies the data…?

11/30

memory

cachedata

What’s up with the other copies?

data

data

Bus

Cache Coherence

• We have lots of copies of data

– Original copy in memory

– Cached copies at processors

• Some processor modifies its own copy

– What do we do with the others?

– How to avoid confusion?

11/31

Write-Back Caches

• Accumulate changes in cache

• Write back when needed

– Need the cache for something else

– Another processor wants it

• On first modification

– Invalidate other entries

– Requires non-trivial protocol …

11/32

– Requires non-trivial protocol …

• Cache entry has three states:

– Invalid: contains raw bits

– Valid: I can read but I can’t write

– Dirty: Data has been modified

– Intercept other load requests

– Write back to memory before reusing cache

Invalidate

• Let’s rewind back to the moment when the red processor updates its

cached data

• It broadcasts an invalidation message � Other processor invalidates its

cache!

Cache loses

read

permission

11/33

BusBus

memory

cachedata

data

cache

permission

Invalidate

• Memory provides data only if not present in any cache, so there is no need

to change it now (this is an expensive operation!)

• Reading is not a problem � The threads get the data from the red process

11/34

Bus

memory

cachedata

data

cache

Mutual Exclusion

• What do we want to optimize?

1. Minimize the bus bandwidth that the spinning threads use

2. Minimize the lock acquire/release latency

3. Minimize the latency to acquire the lock if the lock is idle

11/35

TAS vs. TTAS

• TAS invalidates cache lines

• Spinners

– Always go to bus

• Thread wants to release lock

– delayed behind spinners!!!

• TTAS waits until lock “looks” free

This is why TAS

performs so poorly…

11/36

• TTAS waits until lock “looks” free

– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released

– Invalidation storm …

Huh?

Local Spinning while Lock is Busy

• While the lock is held, all contenders spin in their caches, rereading

cached data without causing any bus traffic

11/37

Bus

memory

busybusybusy

busy

On Release

TAS! TAS!

• The lock is released. All spinners take a cache miss and call Test&Set!

11/38

Bus

memory

free

free

invalidinvalid

Time to Quiescence

• Every process experiences a cache miss

– All state.get() satisfied sequentially

• Every process does TAS

– Caches of other processes are invalidated

• Eventual quiescence (“silence”) after

acquiring the lock

• The time to quiescence increases

P1

P2

Pn

11/39

• The time to quiescence increases

linearly with the number of processors for a bus architecture!

ti
m

e

threads

Mystery Explained

ti
m

e

TAS lock TTAS lock

• Now we understand why the TTAS lock performs much better than the

TAS lock, but still much worse than an ideal lock!

11/40

threads

ideal

• How can we do better?

Introduce Delay

• If the lock looks free, but I fail to get it, there must be lots of contention

• It’s better to back off than to collide again!

• Example: Exponential Backoff

• Each subsequent failure doubles expected waiting time

11/41

2d4d

waiting time
d

spin lock

Exponential Backoff Lock

public class Backoff implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
int delay = MIN_DELAY;
while (true) {

while(state.get()) {}
if (!lock.getAndSet())

Fix minimum delay

Back off for

11/42

if (!lock.getAndSet())
return;

sleep(random() % delay);
if (delay < MAX_DELAY)

delay = 2 * delay;
}

}

// unlock() remains the same

}

Back off for

random duration

Double maximum

delay until an upper

bound is reached

Backoff Lock: Performance

• The backoff lock outperforms the TTAS lock!

• But it is still not ideal…

ti
m

e

TTAS lock

11/43

threads

ideal

ti
m

e

TAS lock TTAS lock

Backoff lock

Backoff Lock: Evaluation

• Good

– Easy to implement

– Beats TTAS lock

• Bad

– Must choose parameters carefully

– Not portable across platforms

11/44

• How can we do better?

• Avoid useless invalidations

– By keeping a queue of threads

• Each thread

– Notifies next in line

– Without bothering the others

ALock: Initially

next
idle

• The Anderson queue lock (ALock) is an array-based queue lock

• Threads share an atomic tail field (called next)

11/45

flags

T F F F F F F F

ALock: Acquiring the Lock

next
acquired

• To acquire the lock, each thread atomically increments the tail field

• If the flag is true, the lock is acquired

• Otherwise, spin until the flag is true

The lock

is mine!

11/46

flags

T F F F F F F F

ALock: Contention

next
acquired

• If another thread wants to acquire the lock, it applies get&increment

• The thread spins because the flag is false

acquiring

11/47

flags

T F F F F F F F

ALock: Releasing the Lock

next
released

• The first thread releases the lock by setting the next slot to true

• The second thread notices the change and gets the lock

acquired The lock

is mine!

11/48

flags

T T F F F F F F

ALock

public class Alock implements Lock {
boolean[] flags = {true,false,...,false};
AtomicInteger next = new AtomicInteger(0);
ThreadLocal<Integer> mySlot;

public void lock() {
mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {}

One flag per thread

Thread-local variable

Take the next slot

11/49

while (!flags[mySlot % n]) {}
flags[mySlot % n] = false;

}

public void unlock() {
flags[(mySlot+1) % n] = true;

}
}

Take the next slot

Tell next thread to go

ALock: Performance

• Shorter handover than backoff

• Curve is practically flat

• Scalable performance

• FIFO fairness

11/50

threads

ideal

ti
m

e

TAS lock TTAS lock

ALock

ALock: Evaluation

• Good

– First truly scalable lock

– Simple, easy to implement

• Bad

– One bit per thread

– Unknown number of threads?

11/51

ALock: Alternative Technique

• The threads could update own flag and spin on their predecessor’s flag

acquiring acquiring

i i+1

11/52

• This is basically what the CLH lock does, but using a linked list instead of

an array

• Is this a good idea?

flags

… F F F F F F F

i

i-1

i+1

i

Not discussed

in this lecture

NUMA Architectures

• Non-Uniform Memory Architecture

• Illusion

– Flat shared memory

• Truth

– No caches (sometimes)

– Some memory regions faster than others

11/53

Spinning on local memory is fast: Spinning on remote memory is slow:

MCS Lock

• Idea

– Use a linked list instead of an array � small, constant-sized space

– Spin on own flag, just like the Anderson queue lock

• The space usage

– L = number of locks

– N = number of threads

11/54

– N = number of threads

• of the Anderson lock is O(LN)

• of the MCS lock is O(L+N)

MCS Lock: Initially

tail

idle
Queue tail

• The lock is represented as a linked list of QNodes, one per thread

• The tail of the queue is shared among all threads

11/55

MCS Lock: Acquiring the Lock

• To acquire the lock, the thread places its QNode at the tail of the list

by swapping the tail to its QNode

• If there is no predecessor, the thread acquires the lock

Swap

The lock

is mine!

acquired

tail

11/56

false

(allocate QNode)

Swap

false = lock

is free

acquiring

• If another thread wants to acquire the lock, it again applies swap

• The thread spins on its own QNode because there is a predecessor

Swap

MCS Lock: Contention

tail

acquired

11/57

true

Swap

false

• The first thread releases the lock by setting its successor’s QNode to false

MCS Lock: Releasing the Lock

The lock

is mine!

acquired

tail

released

11/58

falsefalse

MCS Queue Lock

public class QNode {
boolean locked = false;
QNode next = null;

}

11/59

MCS Queue Lock

public class MCSLock implements Lock {
AtomicReference tail;

public void lock() {
QNode qnode = new QNode();
QNode pred = tail.getAndSet(qnode);
if (pred != null) {

qnode.locked = true; Add my node to the tail

11/60

qnode.locked = true;
pred.next = qnode;
while (qnode.locked) {}

}
}

...

Fix if queue was

non-empty

• If there is a successor, unlock it. But, be cautious!

• Even though a QNode does not have a successor, the purple thread knows

that another thread is active because tail does not point to its QNode!

MCS Lock: Unlocking

acquiring

Swap tail

releasing

11/61

Waiting…

true

Swap

false

• As soon as the pointer to the successor is set, the purple thread can

release the lock

MCS Lock: Unlocking Explained

The lock

is mine!

Set my successor’s

QNode to false!

acquired

tail

released

11/62

falsefalse

MCS Queue Lock

...

public void unlock() {
if (qnode.next == null) {

if (tail.CAS(qnode, null))
return;

while (qnode.next == null) {}
}

Missing successor?

If really no successor,

tail = null

Otherwise, wait for

11/63

}
qnode.next.locked = false;

}
}

Otherwise, wait for

successor to catch up

Pass lock to successor

Abortable Locks

• What if you want to give up waiting for a lock?

• For example

– Time-out

– Database transaction aborted by user

• Back-off Lock

– Aborting is trivial: Just return from lock() call!

11/64

– Aborting is trivial: Just return from lock() call!

– Extra benefit: No cleaning up, wait-free, immediate return

• Queue Locks

– Can’t just quit: Thread in line behind will starve

– Need a graceful way out…

Problem with Queue Locks

spinning

truetruefalse

acquired aborted

11/65

spinning

truefalsefalse

released
…?

Abortable MCS Lock

• A mechanism is required to recognize and remove aborted threads

– A thread can set a flag indicating that it aborted

– The predecessor can test if the flag is set

– If the flag is set, its new successor is the successor’s successor

– How can we handle concurrent aborts? This is not discussed in this lecture

Spinning on

remote object…?!

11/66

spinning

truetruefalse

acquired aborted

Composite Locks

• Queue locks have many advantages

– FIFO fairness, fast lock release, low contention

but require non-trivial protocols to handle aborts (and recycling of nodes)

• Backoff locks support trivial time-out protocols

but are not scalable and may have slow lock release times

• A composite lock combines the best of both approaches!

11/67

• A composite lock combines the best of both approaches!

• Short fixed-sized array of lock nodes

• Threads randomly pick a node and try

to acquire it

• Use backoff mechanism to acquire a node

• Nodes build a queue

• Use a queue lock mechanism to acquire the lock

One Lock To Rule Them All?

• TTAS+Backoff, MCS, Abortable MCS…

• Each better than others in some way

• There is not a single best solution

• Lock we pick really depends on

– the application

– the hardware

– which properties are important

11/68

– which properties are important

Handling Multiple Threads

• Adding threads should not lower the throughput

– Contention effects can mostly be fixed by Queue locks

• Adding threads should increase throughput

– Not possible if the code is inherently sequential

– Surprising things are parallelizable!

11/69

• How can we guarantee consistency if there are many threads?

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

– Mostly easy to reason about

– This is the standard Java model (synchronized blocks and methods)

• Problem: Sequential bottleneck

– Threads “stand in line”

11/70

– Threads “stand in line”

– Adding more threads does not improve throughput

– We even struggle to keep it from getting worse…

• So why do we even use a multiprocessor?

– Well, some applications are inherently parallel…

– We focus on exploiting non-trivial parallelism

Credits

• The TTAS lock is due to Kruskal, Rudolph, and Snir, 1988.

• Tom Anderson invented the ALock, 1990.

• The MCS lock is due to Mellor-Crummey and Scott, 1991.

11/71

That’s all!
Questions & Comments?

11/72ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

