
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Consistency & Shared Memory
Part 2, Chapter 13

13/2

Overview

• Consistency

• Shared Memory

13/3

Consistency Models (Client View)

• Interface that describes the system behavior (abstract away
implementation details)

• If clients read/write data, they expect the behavior to be the same as for
a single storage cell.

13/4

Example

• We have memory that supports 3 types of operations:

– write(u := x): write value x to the memory location at address u

– read(u): Read value stored at address u and return it

– snapshot(): return a map that contains all address-value pairs

• Each operation has a start-time TS and return-time TR (time it returns to
the invoking client). The duration is given by TR – TS.

start-time

A X Y B

read(u)

write(u := 3)

return-time

replica

13/5

Motivation

read(u)

?

write(u:=1)

write(u:=2)

write(u:=3)

write(u:=4)

write(u:=5)

write(u:=6)

write(u:=7)

time

13/6

Executions

• We look at executions E that define
the (partial) order in which
processes invoke operations.

• Real-time partial order of an
execution <r:

– p <r q means that duration of
operation p occurs entirely before
duration of q (i.e., p returns before
the invocation of q in real time).

• Client partial order <c :

– p <c q means p and q occur at the
same client, and that p returns
before q is invoked.

A B

Real time partial
order <r

A B

Client partial
order <c

13/7

Strong Consistency: Linearizability

• A replicated system is called linearizable if it behaves exactly as a single-
site (unreplicated) system.

Definition

Execution E is linearizable if there exists a sequence H such that:

1) H contains exactly the same operations as E, each paired
with the return value received in E

2) The total order of operations in H is compatible with the
real-time partial order <r

3) H is a legal history of the data type that is replicated

13/8

Example: Linearizable Execution

A X Y B

read(u1)

write(u2 := 7)

snapshot()

5

(u0:0, u1:5,
u2:7, u3:0)

write(u1 := 5)

read(u2)

0

write(u3 := 2)

Valid sequence H:

1.) write(u1 := 5)
2.) read(u1) → 5
3.) read(u2) → 0
4.) write(u2 := 7)
5.) snapshot() →

(u0: 0, u1: 5, u2:7, u3:0)
6.) write(u3 := 2)

For this example, this is the
only valid H. In general there
might be several sequences
H that fullfil all required
properties.

Real time partial order <r

13/9

Strong Consistency: Sequential Consistency

• Orders at different locations are disregarded if it cannot be determined by
any observer within the system.

• I.e., a system provides sequential consistency if every node of the system
sees the (write) operations on the same memory address in the same
order, although the order may be different from the order as defined by
real time (as seen by a hypothetical external observer or global clock).

Definition

Execution E is sequentially consistent if there exists a sequence H such that:

1) H contains exactly the same operations as E, each paired with the
return value received in E

2) The total order of operations in H is compatible with the client partial
order <c

3) H is a legal history of the data type that is replicated

13/10

Example: Sequentially Consistent

A X Y B

read(u1)

snapshot()

5

(u0:0, u1:5,
u2:7, u3:0)

write(u1 := 5)

read(u2)

0

write(u3 := 2)

Real-time partial order required write(u3 := 2)
to be before snapshot(), which contradicts

the view in snapshot()!

write(u2 := 7)

Client partial order <c

Valid sequence H:

1.) write(u1 := 5)
2.) read(u1) → 5
3.) read(u2) → 0
4.) write(u2 := 7)
5.) snapshot() →

(u0:0, u1:5, u2:7, u3:0)
6.) write(u3 := 2)

13/11

Is Every Execution Sequentially Consistent?

A X Y B

write(u2 := 7)

snapshotu0,u1()

(u0:8, u1:0)

write(u1 := 5)

snapshotu2,u3()

(u2:0, u3:2)

write(u3 := 2)

write(u0 := 8)

write(u2 := 7) write(u1 := 5)

write(u0 := 8) write(u3 := 2)

Circular dependencies!

I.e., there is no valid total order and thus above
execution is not sequentially consistent

13/12

Sequential Consistency does not Compose

A X Y B

write(u2 := 7)

snapshotu0,u1()

(u0:8, u1:0)

write(u1 := 5)

snapshotu2,u3()

(u2:0, u3:2)

write(u3 := 2)

write(u0 := 8)

• If we only look at data items 0
and 1, operations are
sequentially consistent

• If we only look at data items 2
and 3, operation are also
sequentially consistent

• But, as we have seen before,
the combination is not
sequentially consistent

Sequential consistency does not compose!

(this is in contrast to linearizability)

13/13

Weak Consistency

• A considerable performance gain can result if messages are transmitted
independently, and applied to each replica whenever they arrive.

– But: Clients can see inconsistencies that would never happen with
unreplicated data.

A X Y B

write(u2:=7)

snapshot()

(u0:0, u1:0, u2:7, u3:2)

write(u1:=5)

write(u3:=2)

snapshot()

(u0:0, u1:5, u2:0, u3:0)

This execution is NOT
sequentially consistent

13/14

Causal Consistency

Definition

A system provides causal consistency if memory operations that
potentially are causally related are seen by every node of the system in
the same order. Concurrent writes (i.e. ones that are not causally related)
may be seen in different order by different nodes.

Definition

The following pairs of operations are causally related:
• Two writes by the same process to any memory location.
• A read followed by a write of the same process (even if the write

addresses a different memory location).
• A read that returns the value of a write from any process.
• Two operations that are transitively related according to the above

conditions.

13/15

Causal Consistency: Example

A X Y B

write(u:=7)

read(u)

7

write(u:=9)
write(u:=4)

read(u)

4

read(u)

9

read(u)

4

read(u)

9

This execution is causally consistent, but
NOT sequentially consistent

causal
relationships

13/16

Weak Consistency: More Concepts

Definition

Monotonic Read Consistency

If a process has seen a particular value for the object, any subsequent
accesses will never return any previous values.

Definition

Monotonic Write Consistency

A write operation by a process on a data item u is completed before any
successive write operation on u by the same process (i.e. system
guarantees to serialize writes by the same process).

Definition

Read-your-Writes Consistency

After a process has updated a data item, it will never see an older value
on subsequent accesses.

13/17

Weak Consistency: Eventual Consistency

• Special form of weak consistency

• Allows for „disconnected operation“

• Requires some conflict resolution
mechanism

– After conflict resolution all clients see the
same order of operations up to a certain
point in time („agreed past“).

– Conflict resolution can occur on the server-
side or on the client-side

Definition

Eventual Consistency

If no new updates are made to the data object, eventually all accesses
will return the last updated value.

13/18

Transactions

• In order to achieve consistency, updates have to be atomic

• A write has to be an atomic transaction

– Updates are synchronized

• Either all nodes (servers) commit a transaction or all abort

• How do we handle transactions in asynchronous systems?

– Unpredictable messages delays!

• Moreover, any node may fail…

– Recall that this problem cannot
be solved in theory!

Long delay

Short delay

13/19

Shared Memory Consensus

• n > 1 processors

• Shared memory is memory that may be accessed simultaneously by
multiple threads/processes.

• Processors can atomically read or write (not both) a shared memory cell

Protocol:

• There is a designated memory cell c.

• Initially c is in a special state “?”

• Processor 1 writes its value v1 into c, then decides on v1.

• A processor j ≠1 reads c until j reads something else than “?”,
and then decides on that.

• Problems with this approach?

13/20

Unexpected Delay

??? ???

13/21

Heterogeneous Architectures

??? ???

i7
i7

Pentium

so much
work!

13/22

Fault-Tolerance

??? ???

13/23

Wait-free Shared Memory Consensus

• n > 1 processors

• Processors can atomically read or write (not both) a shared memory cell

• Processors might crash (stop, or become very slow)

Wait-free implementation:

• Every process (method call) completes in a finite number of steps

• Implies that locks cannot be used  The thread holding the lock may
crash and no other thread can make progress

• We assume that we have wait-free atomic registers (that is, reads and
writes to same register do not overlap)

13/24

A Wait-free Algorithm

• There is a cell c, initially c=“?”

• Every processor i does the following:

r = Read(c);

if (r == “?”) then

Write(c, vi); decide vi;

else

decide r;

• Is this algorithm correct…?

13/25

An Execution

time

cell c32 17

?

?

?

32

1732!
17!

Atomic read/write
register

13/26

Execution Tree

?/? ?/?

32/?

32/?

?/? ?/17?/?

?/17 32/? ?/17

Initial state

?/?

32/32

32/17 32/17 32/17 32/17

17/17

read

read

write

write

read

write

read

read

write write

write

write

write read

write write

13/27

Theorem

??? ???

Theorem

There is no wait-free consensus algorithm
using read/write atomic registers

13/28

Proof

• Make it simple

– There are only two threads A and B and the input is binary

• Assume that there is a protocol

• In this protocol, either A or B “moves” in each step

• Moving means

– Register read

– Register write

A moves B moves

13/29

univalent

Execution Tree (of abstract but “correct” algorithm)

Initial state

Final states (decision values)

1 0 0 1 1 0

bivalent

(0-valent) (1-valent)

critical
(univalent with
the next step)

13/30

Bivalent vs. Univalent

• Wait-free computation is a tree

• Bivalent system states

– Outcome is not fixed

• Univalent states

– Outcome is fixed

– Maybe not “known” yet

– 1-valent and 0-valent states

• Claim

– Some initial system state is bivalent

– This means that the outcome is not always fixed from the start

13/31

Proof of Claim: A 0-Valent Initial State

• All executions lead to the decision 0

• Solo executions also lead to the decision 0

0 0

0 0 Similarly, the
decision is always
1 if both threads

start with 1!

13/32

Proof of Claim: Indistinguishable Situations

• These two situations are indistinguishable  The outcome must be the
same

0 0 0 1

The decision is 0! The decision is 0!

Similarly, the decision is 1 if
the red thread crashed!

13/33

Proof of Claim: A Bivalent Initial State

0 0 1 1

0 0

0 1

1 1

This state is
bivalent!

0 1

0 1

Decision: 0

Decision: 0

Decision: 1

Decision: 1

Decision: 1?

Decision: 0?

13/34

Critical States

• Starting from a bivalent initial state

• The protocol must reach a critical state

– Otherwise we could stay bivalent forever

– And the protocol is not wait-free

• The goal is now to show that the system can always remain bivalent

c
0-valent

A bivalent state is critical if all
children states are univalent

1-valent

13/35

Reaching a Critical State

• The system can remain bivalent forever if there is always an action that
prevents the system from reaching a critical state:

b

b 1

A moves B moves

b

B moves

b

A moves

B moves

B moves

A moves

1

0
A moves

1-valent

0-valent
1-valent

13/36

Model Dependency

• So far, everything was memory-independent!

• True for

– Registers

– Message-passing

– Carrier pigeons

– Any kind of asynchronous computation

• Threads

– Perform reads and/or writes

– To the same or different registers

– Possible interactions?

13/37

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() ? ? ? ?

y.read() ? ? ? ?

x.write() ? ? ? ?

y.write() ? ? ? ?

A reads x

B writes y

13/38

Reading Registers

B reads x

=

c

States look the same to A

A runs solo, decides

A runs solo, decides

10

=

13/39

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? ?

y.write() no no ? ?

13/40

Writing Distinct Registers

A writes y

=

c

States look the same to A

A writes yB writes x

B writes x10

=

13/41

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? no

y.write() no no no ?

13/42

Writing Same Registers

States look the same to A

A writes x B writes x

A runs solo, decides

c

=

A runs solo, decides
A writes x

10

=

13/43

That’s All, Folks!

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no no no

y.write() no no no no

13/44

What Does Consensus Have to Do With Distributed Systems?

• We want to build a concurrent FIFO Queue with multiple dequeuers

13/45

A Consensus Protocol

2-element array

FIFO Queue with red and
black balls

8

Coveted red ball Dreaded black ball

• Assume we have such a FIFO queue and a 2-element array

13/46

A Consensus Protocol

0 1

0

• Thread i writes its value into the array at position i

13/47

0

A Consensus Protocol

0 1

8

• Then, the thread takes the next element from the queue

13/48

0 1

A Consensus Protocol

I got the coveted red ball,
so I will decide my value

I got the dreaded black ball,
so I will decide the other’s

value from the array

8

13/49

A Consensus Protocol

Why does this work?

• If one thread gets the red ball, then the other gets the black ball

• Winner can take its own value

• Loser can find winner’s value in array

– Because threads write array before dequeuing from queue

Implication

• We can solve 2-thread consensus using only

– A two-dequeuer queue

– Atomic registers

13/50

Implications

• Assume there exists

– A queue implementation from atomic registers

• Given

– A consensus protocol from queue and registers

• Substitution yields

– A wait-free consensus protocol from atomic registers

Corollary

• It is impossible to implement a two-dequeuer wait-free FIFO queue with
read/write shared memory.

• This was a proof by reduction; important beyond NP-completeness…

13/51

Read-Modify-Write Shared Memory Consensus

• n > 1 processors

• Wait-free implementation

• Processors can read and write a shared memory cell in one atomic step:
the value written can depend on the value read

• We call this a read-modify-write (RMW) register

• Can we solve consensus using a RMW register…?

13/52

Consensus Protocol Using a RMW Register

• There is a cell c, initially c=“?”

• Every processor i does the following

if (c == “?”) then
write(c, vi); decide vi

else
decide c;

atomic step

RMW(c)

13/53

Discussion

• Protocol works correctly

– One processor accesses c first; this processor will determine decision

• Protocol is wait-free

• RMW is quite a strong primitive

– Can we achieve the same with a weaker primitive?

13/54

Read-Modify-Write More Formally

• Method takes 2 arguments:

– Cell c

– Function f

• Method call:

– Replaces value x of cell c with f(x)

– Returns value x of cell c

13/55

public class RMW {
private int value;

public synchronized int rmw(function f) {
int prior = this.value;
this.value = f(this.value);
return prior;

}

}

Read-Modify-Write

Return prior value

Apply function

13/56

Read-Modify-Write: Read

public class RMW {
private int value;

public synchronized int read() {
int prior = this.value;
this.value = this.value;
return prior;

}

}

Identify function

13/57

Read-Modify-Write: Test&Set

public class RMW {
private int value;

public synchronized int TAS() {
int prior = this.value;
this.value = 1;
return prior;

}

}

Constant function

13/58

Read-Modify-Write: Fetch&Inc

public class RMW {
private int value;

public synchronized int FAI() {
int prior = this.value;
this.value = this.value+1;
return prior;

}

}

Increment function

13/59

Read-Modify-Write: Fetch&Add

public class RMW {
private int value;

public synchronized int FAA(int x) {
int prior = this.value;
this.value = this.value+x;
return prior;

}

}

Addition function

13/60

Read-Modify-Write: Swap

public class RMW {
private int value;

public synchronized int swap(int x) {
int prior = this.value;
this.value = x;
return prior;

}

}

Set to x

13/61

Read-Modify-Write: Compare&Swap

public class RMW {
private int value;

public synchronized int CAS(int old, int new) {
int prior = this.value;
if(this.value == old)

this.value = new;
return prior;

}

}

“Complex” function

13/62

Definition of Consensus Number

• An object has consensus number n

– If it can be used

– Together with atomic read/write registers

– To implement n-thread consensus, but not (n+1)-thread consensus

• Example: Atomic read/write registers have consensus number 1

– Works with 1 process

– We have shown impossibility with 2

13/63

Consensus Number Theorem

• Consensus numbers are a useful way of measuring synchronization power

• An alternative formulation:

– If X has consensus number c

– And Y has consensus number d < c

– Then there is no way to construct a
wait-free implementation of X by Y

• This theorem will be very useful

– Unforeseen practical implications!

Theorem

If you can implement X from Y
and X has consensus number c,

then Y has consensus number at least c

13/64

Theorem

• A RMW is non-trivial if there exists a value v such that v ≠ f(v)

– Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW…

– But not read

• Implies no wait-free implementation of RMW registers from read/write
registers

• Hardware RMW instructions not just a convenience

Theorem

Any non-trivial RMW object has
consensus number at least 2

13/65

Proof

public class RMWConsensusFor2 implements Consensus{
private RMW r;

public Object decide() {
int i = Thread.myIndex();
if(r.rmw(f) == v)

return this.announce[i];
else

return this.announce[1-i];
}

}

• A two-thread consensus protocol using any non-trivial RMW object:

Initialized to v

Am I first?

Yes, return
my input

No, return
other’s input

13/66

Interfering RMW

• Let F be a set of functions such that for all fi and fj, either

– They commute: fi(fj(x))=fj(fi(x))

– They overwrite: fi(fj(x))=fi(x)

• Claim: Any such set of RMW objects has consensus number exactly 2

Examples:

• Overwrite

– Test&Set , Swap

• Commute

– Fetch&Inc, Fetch&Add

fi(x) = new value of cell
(not return value of fi)

13/67

Proof

cA about to apply fA B about to apply fB

• There are three threads, A, B, and C

• Consider a critical state c:

0-valent 1-valent

13/68

Proof: Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

C runs solo C runs solo

1-valent

10

13/69

Proof: Maybe the Functions Commute

c
A applies fA B applies fB

A applies fAB applies fB

C runs solo

These states look the same to C

C runs solo

0-valent 1-valent

13/70

Proof: Maybe the Functions Overwrite

c
A applies fA B applies fB

A applies fAC runs solo

0-valent 1-valent

C runs solo

10

13/71

Proof: Maybe the Functions Overwrite

These states look the same to C

c

0-valent 1-valent

C runs solo

C runs solo

A applies fA B applies fB

A applies fA

13/72

Impact

• Many early machines used these “weak” RMW instructions

– Test&Set (IBM 360)

– Fetch&Add (NYU Ultracomputer)

– Swap

• We now understand their limitations

13/73

public class RMWConsensus implements Consensus {
private RMW r;

public Object decide() {
int i = Thread.myIndex();
int j = r.CAS(-1,i);
if(j == -1)

return this.announce[i];
else

return this.announce[j];
}

}

Consensus with Compare & Swap

Initialized to -1

Am I first?

Yes, return
my input

No, return
other’s input

13/74

The Consensus Hierarchy

1

• Read/Write
Registers

2

• Test&Set

• Fetch&Inc

• Fetch&Add

• Swap

… ∞

• CAS

• LL/SC

13/75

Credits

• The impossibility result is by Fischer, Lynch, Patterson, 1985

• The consensus hierarchy is by Herlihy, 1991

13/76ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

That’s all, folks!
Questions & Comments?

