
Chapter 6

Eventual Consistency &
Bitcoin

How would you implement an ATM? Does the following implementation work
satisfactorily?

Algorithm 6.1 Näıve ATM

1: Issue withdrawal request to bank
2: Wait for response from bank
3: if balance of customer sufficient then
4: Dispense cash
5: else
6: Display error
7: end if

Remarks:

• A connection problem between the bank and the ATM may block
Algorithm 6.1 in Line 2.

• A network partition is a failure where a network splits into at least
two parts that cannot communicate with each other. Intuitively any
non-trivial distributed system cannot proceed during a partition and
maintain consistency. In the following we introduce the tradeoff be-
tween consistency, availability and partition tolerance.

• There are numerous causes for partitions to occur, e.g., physical dis-
connections, software errors, or incompatible protocol versions. From
the point of view of a node in the system, a partition is similar to a
period of sustained message loss.

6.1 Consistency, Availability and Partitions

Definition 6.2 (Consistency). All nodes in the system agree on the current
state of the system.

61



62 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Definition 6.3 (Availability). The system is operational and instantly process-
ing incoming requests.

Definition 6.4 (Partition Tolerance). Partition tolerance is the ability of a
distributed system to continue operating correctly (consistently and available)
even in the presence of a network partition.

Theorem 6.5 (CAP Theorem). It is impossible for a distributed system to
simultaneously provide Consistency, Availability and Partition Tolerance. A
distributed system can satisfy any two of these but not all three.

Proof. Assume two nodes, sharing some state. The nodes are in different par-
titions, i.e., they cannot communicate. Assume a request wants to update the
state and contacts a node. The node may either: 1) update its local state,
resulting in inconsistent states, or 2) not update its local state, i.e., the system
is no longer available for updates.

Algorithm 6.6 Partition tolerant and available ATM

1: if bank reachable then
2: Synchronize local view of balances
3: if balance of customer insufficient then
4: Display error and abort
5: end if
6: end if
7: Dispense cash
8: Log withdrawal for synchronization

Remarks:

• Algorithm 6.6 is partition tolerant and available since it continues to
process requests even when the bank is not reachable.

• The ATM’s local view of the balances may diverge from the balances
as seen by the bank, therefore consistency is no longer guaranteed.

• The algorithm will synchronize any changes it made to the local bal-
ances back to the bank once connectivity is re-established. This is
known as eventual consistency.

Definition 6.7 (Eventual Consistency). If no new updates to the shared state
are issued, then eventually the system is in a quiescent state, i.e., no more
messages need to be exchanged between nodes, and the shared state is consistent.

Remarks:

• Eventual consistency is a form of weak consistency.

• Eventual consistency guarantees that the state is eventually agreed
upon, but the nodes may disagree temporarily.

• During a partition, different updates may by semantically conflicting
with each other. A conflict resolution mechanism is required to resolve
the conflicts and allow the nodes to eventually agree on a common
state.



6.2. BITCOIN 63

• One example of eventual consistency is the Bitcoin cryptocurrency
system.

6.2 Bitcoin

Definition 6.8 (Bitcoin Network). The Bitcoin network is a randomly con-
nected overlay network of a few thousand nodes, controlled by a variety of users
or corporations. All nodes perform the same operations, i.e., it is a homogenous
network and without central control.

Remarks:

• The lack of structure is intentional: it ensures that an attacker cannot
strategically position itself in the network and manipulate the infor-
mation exchange. Information is exchanged via a simple broadcasting
protocol.

• Not everyone needs to run a fully validating node, and end-users will
likely use a lightweight client that only temporarily connects to the
network.

Definition 6.9 (Address). An address is a textual representation of the hash
of an elliptic curve public key. A private/public key pair is used to uniquely
identify the owner of funds an address.

Remarks:

• A user may generate an arbitrary number of addresses which serve as
the user’s identities in the system. It is hard to link addresses to the
user that controls them, hence Bitcoin is often referred to as being
pseudonymous.

• The Bitcoin network collaboratively tracks the balance in bitcoins of
each address.

• The textual representation of an address is composed of a network
identifier byte, the hash of the public key and a checksum. It is com-
monly stored in base 58 encoding, a custom encoding similar to base
64 with some ambiguous symbols removed, e.g., lowercase letter “l”
since it is similar to the number “1”.

• The hashing algorithm produces addresses of size 20 bytes. This
means that there are 2160 distinct addresses. It might be tempting
to brute force a target address, however at one billion trials per sec-
ond one still requires approximately 245 years in expectation to find
a matching private/public key pair. Due to the birthday paradox the
odds improve if instead of brute forcing a single address we attempt to
brute force any address. While the odds of a successful trial increase
with the number of addresses, lookups become more costly.

Definition 6.10 (Output). An output is a tuple consisting of an amount of bit-
coins and a spending condition. Most commonly the spending condition requires
a valid signature associated with the private key of an address.



64 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Remarks:

• Spending conditions are scripts that offer a variety of options. Exam-
ples include conditions that require the result of a simple computation
to be provided, or the solution to a cryptographic puzzle.

• Outputs exist in two states: unspent and spent. Any output can be
spent at most once. The address balance is the sum of bitcoin amounts
in unspent outputs that are associated with the address.

• The set of unspent transaction outputs (UTXO) and the rules about
how they can be spent is the shared state of Bitcoin. Every node in the
Bitcoin network holds a complete replica of that state. Local replicas
may temporarily diverge, but consistency is eventually re-established.

Definition 6.11 (Input). An input is a tuple consisting of a reference to a
previously created output and arguments to the spending condition, proving that
the transaction creator has the permission to spend the referenced output.

Definition 6.12 (Transaction). A transaction is a datastructure that describes
the transfer of bitcoins from spenders to recipients. The transaction consists of
a number of inputs and new outputs. The inputs result in the referenced outputs
being marked as spent (removed from the UTXO), and the new outputs being
added to the UTXO.

Remarks:

• Inputs reference the output that is being spent by a (h, i)-tuple, where
h is the hash of the transaction that created the output, and i specifies
the index of the output in that transaction.

• Transactions are broadcast in the Bitcoin network and processed by
every node that receives them.

Algorithm 6.13 Node Receives Transaction

1: Receive transaction t
2: for each input (h, i) in t do
3: if output (h, i) is spent in local UTXO or signature invalid then
4: Drop t and stop
5: end if
6: end for
7: if sum of values of inputs < sum of values of outputs then
8: Drop t and stop
9: end if

10: for each input (h, i) in t do
11: Mark (h, i) as spent in local UTXO
12: end for
13: Append t to local history
14: Forward t to neighbors in the Bitcoin network



6.2. BITCOIN 65

Remarks:

• Note that the effect of a transaction on the state is deterministic. In
other words if all nodes receive the same set of transactions in the
same order (Definition 1.8), then the state across nodes is consistent.

• Notice that so far we only described a local acceptance policy. Nothing
prevents nodes to locally accept different transactions that spend the
same output.

• Transactions are in one of two states: unconfirmed or confirmed. In-
coming transactions from the broadcast are unconfirmed and added
to a pool of transactions called the memory pool.

Definition 6.14 (Doublespend). A doublespend is a situation in which multiple
transactions attempt to spend the same output. Only one transaction can be valid
since outputs can only be spent once. Nodes accepting different transactions in
a doublespend do not agree on the validity of those transactions, and the global
state is inconsistent.

Remarks:

• Doublespends may occur naturally, e.g., if outputs are co-owned by
multiple users. However, often doublespends are intentional – we call
these doublespend-attacks: In a transaction, an attacker pretends to
transfer an output to a victim, only to doublespend the same output
in another transaction back to itself.

• Doulespends result in an inconsistent state since the validity of trans-
actions depends on the order in which they arrive. If two conflicting
transactions are seen by a node, the node considers the first to be valid,
see Algorithm 6.13. The second transaction is invalid since it spends
an output that is already spent. The order in which transactions are
seen may not be the same for all nodes, hence the inconsistent state.

• If doublespends are not resolved, the system state diverges. There-
fore a conflict resolution mechanism is needed to decide which of the
conflicting transactions is to be confirmed (accepted by everybody),
to achieve eventual consistency.

Definition 6.15 (Proof-of-Work). Proof-of-Work (PoW) is a mechanism that
allows a party to prove to another party that a certain amount of computa-
tional resources have been utilized for a period of time. A function Fd(c, x) →
{true, false}, where difficulty d is a positive number, while challenge c and
nonce x are usually bit-strings, is called a Proof-of-Work function if it has fol-
lowing properties:

1. Fd(c, x) is fast to compute if d, c, and x are given.

2. For fixed parameters d and c, finding x such that Fd(c, x) = true is com-
putationally difficult but feasible. The difficulty d is used to adjust the time
to find such an x.



66 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 6.16 The Bitcoin Proof-of-Work function

1: Nonce x = 0, challenge c, difficulty d
2: dmin = 2224

3: target = dmin/d
4: repeat
5: x = x+ 1
6: until SHA256(SHA256(c|x)) < target
7: return x

Remarks:

• In Bitcoin the PoW function Fd concatenates the challenge and nonce,
and hashes them twice using SHA256. The output of SHA256 is a
cryptographic hash with a numeric value in {0, . . . , 2256 − 1} which is
compared to the target value. The target value is the ratio between
minimum difficulty dmin and the current difficulty d.

• SHA256 is a cryptographic hash function with pseudorandom output.
No better algorithm is known to find an input x such that the function
returns true than simply iterating over possible inputs. This is by
design to make it difficult to find such an input, but simple to verify
the validity once it has been found.

• If all nodes were computing the PoW for the same challenge, then
the fastest node would always win. However, as we will see in Defi-
nition 6.18, each node attempts to find a valid PoW for a challenge
specific to the node.

Definition 6.17 (Block). A block is a datastructure used to communicate in-
cremental changes to the local state of a node. A block consists of a list of
transactions, a reference to a previous block and a nonce. A block lists some
transactions the block creator has accepted to its memory-pool since the previous
block. The creation of a block is a rare global event thanks to the use of a PoW
mechanism.

Remarks:

• With their reference to a previous block, the blocks build a tree, rooted
in the so called genesis block.

• The PoW mechanism allows the block creator (“miner”) to vary the
nonce until a valid PoW is found. The difficulty is adjusted so that
globally a block is found about every 10 minutes in expectation.

• The primary goal of the PoW mechanism is to adjust the rate at
which blocks are found in the network, giving the network time to
synchronize on the latest block.

• Finding a block allows the finder to impose changes in its local memory
pool to all other nodes. Upon receiving a block, all nodes roll back
any local changes since the previous block and apply the new block’s
changes.



6.2. BITCOIN 67

• Transactions contained in a block are said to be confirmed by that
block.

Definition 6.18 (Reward Transaction). The first transaction in a block is called
the reward transaction. The block’s miner is rewarded for confirming transac-
tions by allowing it to mint new coins. The reward transaction has a dummy
input, and the sum of outputs is determined by a fixed amount and the sum of
the fees of transactions confirmed in the block.

Remarks:

• A reward transaction is the sole exception to the rule that the sum of
inputs must be at least the sum of outputs.

• The number of bitcoins that are minted by the reward transaction and
assigned to the miner is determined by a subsidy schedule that is part
of the protocol. Initially the subsidy was 50 bitcoins for every block,
and it is being halved every 210,000 blocks, or 4 years in expectation.
Due to the halving of the block reward, the total amount of bitcoins
in circulation never exceeds 21 million bitcoins.

• It is expected that the cost of performing the PoW to find a block, in
terms of energy and infrastructure, is close to the value of the reward
the miner receives from the reward transaction in the block.

Definition 6.19 (Blockchain). The longest path from the genesis block, i.e.,
root of the tree, to a leaf is called the blockchain. The blockchain acts as a
consistent transaction history on which all nodes eventually agree.

Remarks:

• The path length from the genesis block to block b is the height hb.

• Only the longest path from the genesis block to a leaf is a valid trans-
action history, since branches may contradict each other because of
doublespends.

• Since only transactions in the longest path are agreed upon, miners
have an incentive to append their blocks to the longest chain, thus
agreeing on the current state.

• The mining incentives quickly increased the difficulty of the PoW
mechanism: initially miners used CPUs to mine blocks, but CPUs
were quickly replaced by GPUs, FPGAs and even application specific
integrated circuits (ASICs) as bitcoins appreciated. This results in
an equilibrium today in which only the most cost efficient miners, in
terms of hardware supply and electricy, make a profit in expectation.

• If multiple blocks are mined more or less concurrently, the system is
said to have forked. Forks happen naturally because mining is a dis-
tributed random process and two new blocks may be found at roughly
the same time.



68 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 6.20 Node Receives Block

1: Receive block b
2: Current head is block bmax at height hmax

3: Connect block b in the tree as child of its parent p at height hb = hp + 1
4: if hb > hmax then
5: hmax = hb
6: bmax = b
7: Compute UTXO for the path leading to bmax

8: Cleanup memory pool
9: end if

Remarks:

• Algorithm 6.20 describes how a node updates its local state upon
receiving a block. Notice that, like Algorithm 6.13, this describes
the local policy and may also result in node states diverging, i.e., by
accepting different blocks at the same height as current block.

• Unlike extending the current path, switching paths may result in con-
firmed transactions no longer being confirmed, because the blocks in
the new path do not include them. Switching paths is referred to as
a reorg.

• Cleaning up of the memory pool involves 1) removing transactions that
were confirmed in a block in the current path, 2) removing transactions
that conflict with confirmed transactions, and 3) adding transactions
that were confirmed in the previous path, but are no longer confirmed
in the current path.

• In order to avoid having to recompute the entire UTXO at every
new block being added to the blockchain, all current implementations
use datastructures that store undo information about the operations
applied by a block. This allows efficient switching of paths and updates
of the head by moving along the path.

Theorem 6.21. Forks are eventually resolved and all nodes eventually agree
on which is the longest blockchain. The system therefore guarantees eventual
consistency.

Proof. In order for the fork to continue to exist, pairs of blocks need to be
found in close succession, extending distinct branches, otherwise the nodes on
the shorter branch would switch to the longer one. The probability of branches
being extended almost simultaneously decreases exponentially with the length
of the fork, hence there will eventually be a time when only one branch is being
extended, becoming the longest branch.

6.3 Smart Contracts

Definition 6.22 (Smart Contract). A smart contract is an agreement between
two or more parties, encoded in such a way that the correct execution is guar-
anteed by the blockchain.



6.3. SMART CONTRACTS 69

Remarks:

• Contracts allow business logic to be encoded in Bitcoin transactions
which mutually guarantee that an agreed upon action is performed.
The blockchain acts as conflict mediator, should a party fail to honor
an agreement.

• The main enabler for smart contracts is the use of scripts in inputs and
outputs to setup the spending conditions and arguments. Scripts, to-
gether with some additional features such as timelocks, allow encoding
complex conditions, specifying who may spend the funds associated
with an output and when.

Definition 6.23 (Timelock). Bitcoin provides a mechanism to make transac-
tions invalid until some time in the future: timelocks. A transaction may
specify a locktime: the earliest time, expressed in either a Unix timestamp or
a blockchain height, at which it may be included in a block and therefore be
confirmed.

Remarks:

• Transactions with a timelock are not released into the network until
the timelock expires. It is the responsibility of the node receiving the
payment to store the transaction locally until the timelock expires and
then release it to the network.

• Nodes in the Bitcoin network discard transactions with future time-
locks. Any block including the transaction, that appears at a lower
height or before the specified time, is deemed invalid.

• Timelocks can be used to replace or supersede transactions: a time-
locked transaction t1 can replaced by another transaction t0, spending
some of the same outputs, if the replacing transaction t0 has an ear-
lier timelock and can be broadcast in the network before the replaced
transaction t1 becomes valid.

Definition 6.24 (Singlesig and Multisig Outputs). When an output can be
claimed by providing a single signature it is called a singlesig output. In
contrast the script of multisig outputs specifies a set of m public keys and
requires k-of-m (with k ≤ m) valid signatures from distinct matching public
keys from that set in order to be valid.

Remarks:

• Most smart contracts begin with the creation of a 2-of-2 multisig out-
put, requiring a signature from both parties. Once the transaction
creating the multisig output is confirmed in the blockchain, both par-
ties are guaranteed that the funds of that output cannot be spent
unilaterally.



70 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 6.25 Parties A and B create a 2-of-2 multisig output o

1: B sends a list IB of inputs with cB coins to A
2: A selects its own inputs IA with cA coins
3: A creates transaction ts{[IA, IB ], [o = cA + cB → (A,B)]}
4: A creates timelocked transaction tr{[o], [cA → A, cB → B]} and signs it
5: A sends ts and tr to B
6: B signs both ts and tr and sends them to A
7: A signs ts and broadcasts it to the Bitcoin network

Remarks:

• ts is called a setup transaction and is used to lock in funds into a
shared account. If ts is signed and broadcast immediately then one of
the parties not collaborating to spend the multisig output would result
in the funds becoming unspendable. To avoid a situation where the
funds cannot be spent the protocol also creates a timelocked refund
transaction tr which guarantees that, should the funds not be spent
before the timelock expires, the funds are returned to the respective
party. At no point in time one of the parties holds a fully signed
setup transaction without the other party holding a fully signed refund
transaction guaranteeing that funds are eventually returned.

• Both transactions require the signature of both parties. In the case of
the setup transaction because it has two inputs from A and B respec-
tively which require individual signatures. In the case of the refund
transaction the single input spending the multisig output requires both
signatures being a 2-of-2 multisig output.

Algorithm 6.26 Simple Micropayment Channel from S to R with capacity c

1: cS = c, cR = 0
2: S and R use Algorithm 6.25 to set up output o with value c from S
3: Create settlement transaction tf{[o], [cS → S, cR → R]}
4: while channel open and cr < c do
5: In exchange for good with value δ
6: cR = cR + δ
7: cS = cS − δ
8: Update tf with outputs [cR → R, cS → S]
9: S signs and sends tf to R

10: end while
11: R signs latest tf and broadcasts it

Remarks:

• Algorithm 6.26 implements a Simple Micropayment Channel, a smart
contract that is used for rapidly adjusting micropayments from a
sender to a receiver. Only two transactions are ever broadcast and
inserted into the blockchain: the setup transaction ts and the last set-
tlement transaction tf . There may have been any number of updates



6.4. WEAK CONSISTENCY 71

to the settlement transaction, transferring ever more of the shared
output to the recipient.

• The number of bitcoins c used to fund the channel is also the maximum
total that may be transferred over the simple micropayment channel.

• At any time the recipient R is guaranteed to eventually receive the
bitcoins, since she holds a fully signed settlement transaction, while
the sender only has partially signed ones.

• The simple micropayment channel is intrinsically unidirectional, since
the recipient may choose any of the settlement transactions in the
protocol, she will use the one with maximum payout for her. If we
were to transfer bitcoins back we would be reducing the amount paid
out to the recipient, hence she would choose not to broadcast that
transaction.

6.4 Weak Consistency

Eventual consistency is only one form of weak consistency. A number of different
tradeoffs between partition tolerance and consistency exist in literature.

Definition 6.27 (Monotonic Read Consistency). If a node u has seen a partic-
ular value of an object, any subsequent accesses of u will never return any older
values.

Remarks:

• Users are annoyed if they receive a notification about a comment on
an online social network, but then are unable to reply because the
web interface does not show the same notification yet. In this case
the notification acts as the first read operation, while looking up the
comment on the web interface is the second read operation.

Definition 6.28 (Monotonic Write Consistency). A write operation by a node
on a data item is completed before any successive write operation by the same
node (i.e. system guarantees to serialize writes by the same node).

Remarks:

• The ATM must replay all operations in order, otherwise it might hap-
pen that an earlier operation overwrites the result of a later operation,
resulting in an inconsistent final state.

Definition 6.29 (Read-Your-Write Consistency). After a node u has updated
a data item, any later reads from node u will never see an older value.

Definition 6.30 (Causal Relation). The following pairs of operations are said
to be causally related:

• Two writes by the same node to different variables.

• A read followed by a write of the same node.



72 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

• A read that returns the value of a write from any node.

• Two operations that are transitively related according to the above condi-
tions.

Definition 6.31 (Causal Consistency). A system provides causal consistency
if operations that potentially are causally related are seen by every node of the
system in the same order. Concurrent writes are not causally related, and may
be seen in different orders by different nodes.

Chapter Notes

The CAP theorem was first introduced by Fox and Brewer [FB99], although it
is commonly attributed to a talk by Eric Brewer [Bre00]. It was later proven
by Gilbert and Lynch [GL02] for the asynchronous model. Gilbert and Lynch
also showed how to relax the consistency requirement in a partially synchronous
system to achieve availability and partition tolerance.

Bitcoin was introduced in late 2008 by Satoshi Nakamoto [Nak08]. Nakamoto
is thought to be a pseudonym used by either a single person or a group of per-
sons; it is still unknown who invented Bitcoin, giving rise to speculation and
conspiracy theories. Among the plausible theories are noted cryptographers
Nick Szabo [Big13] and Hal Finney [Gre14]. The first Bitcoin client was pub-
lished shortly after the paper and the first block was mined on January 3, 2009.
The genesis block contained the headline of the release date’s The Times is-
sue “The Times 03/Jan/2009 Chancellor on brink of second bailout for banks”,
which serves as proof that the genesis block has been indeed mined on that date,
and that no one had mined before that date. The quote in the genesis block
is also thought to be an ideological hint: Bitcoin was created in a climate of
financial crysis, induced by rampant manipulation by the banking sector, and
Bitcoin quickly grew in popularity in anarchic and libertarian circles. The orig-
inal client is nowadays maintained by a group of independent core developers
and remains the most used client in the Bitcoin network.

Central to Bitcoin is the resolution of conflicts due to doublespends, which
is solved by waiting for transactions to be included in the blockchain. This
however introduces large delays for the confirmation of payments which are
undesirable in some scenarios in which an immediate confirmation is required.
Karame et al. [KAC12] show that accepting unconfirmed transactions leads to
a non-negligible probability of being defrauded as a result of a doublespending
attack. This is facilitated by information eclipsing [DW13], i.e., that nodes
do not forward conflicting transactions, hence the victim does not see both
transactions of the doublespend. Bamert et al. [BDE+13] showed that the odds
of detecting a doublespending attack in real-time can be improved by connecting
to a large sample of nodes and tracing the propagation of transactions in the
network.

Bitcoin does not scale very well due to its reliance on confirmations in the
blockchain. A copy of the entire transaction history is stored on every node
in order to bootstrap joining nodes, which have to reconstruct the transaction
history from the genesis block. Simple micropayment channels were introduced
by Hearn and Spilman [HS12] and may be used to bundle multiple transfers be-
tween two parties but they are limited to transferring the funds locked into the



BIBLIOGRAPHY 73

channel once. Recently Duplex Micropayment Channels [DW15] and the Light-
ning Network [PD15] have been proposed to build bidirectional micropayment
channels in which the funds can be transferred back and forth an arbitrary num-
ber of times, greatly increasing the flexibility of Bitcoin transfers and enabling a
number of features, such as micropayments and routing payments between any
two endpoints.

This chapter was written in collaboration with Christian Decker.

Bibliography

[BDE+13] Tobias Bamert, Christian Decker, Lennart Elsen, Samuel Welten,
and Roger Wattenhofer. Have a snack, pay with bitcoin. In IEEE
Internation Conference on Peer-to-Peer Computing (P2P), Trento,
Italy, 2013.

[Big13] John Biggs. Who is the real satoshi nakamoto? one researcher may
have found the answer. http://on.tcrn.ch/l/R0vA, 2013.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Symposium
on Principles of Distributed Computing (PODC). ACM, 2000.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation
in the bitcoin network. In IEEE International Conference on Peer-
to-Peer Computing (P2P), Trento, Italy, September 2013.

[DW15] Christian Decker and Roger Wattenhofer. A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels. In Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS), 2015.

[FB99] Armando Fox and Eric Brewer. Harvest, yield, and scalable tolerant
systems. In Hot Topics in Operating Systems. IEEE, 1999.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 2002.

[Gre14] Andy Greenberg. Nakamoto’s neighbor: My hunt for bitcoin’s cre-
ator led to a paralyzed crypto genius. http://onforb.es/1rvyecq,
2014.

[HS12] Mike Hearn and Jeremy Spilman. Contract: Rapidly adjusting
micro-payments. https://en.bitcoin.it/wiki/Contract, 2012. Last ac-
cessed on November 11, 2015.

[KAC12] G.O. Karame, E. Androulaki, and S. Capkun. Two Bitcoins at
the Price of One? Double-Spending Attacks on Fast Payments in
Bitcoin. In Conference on Computer and Communication Security,
2012.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.



74 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

[PD15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network.
2015.


