Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Networked Systems Group (NSG)

 $\mathrm{HS}\ 2016$

Prof. L. Vanbever & A. El-Hassany, & M. Apostolaki. based on Prof. R. Wattenhoffer's material

Discrete Event Systems Exercise Sheet 3

1 Pumping Lemma Revisited

- a) Determine whether the language $L = \{1^{n^2} \mid n \in \mathbb{N}\}$ is regular. Prove your claim!
- **b)** Consider a regular language L and a pumping number p such that every word $u \in L$ can be written as u = xyz with $|xy| \le p$ and $|y| \ge 1$ such that $xy^i z \in L$ for all $i \ge 0$.

Can you use the pumping number p to determine the number of states of a minimal DFA accepting L? What about the number of states of the corresponding NFA?

2 Context-Free Grammars

Give context-free grammars for the following languages over the alphabet $\Sigma = \{0, 1\}$:

- a) $L_1 = \{w \mid \text{the length of } w \text{ is odd}\}$
- **b)** $L_2 = \{w \mid \text{contains more 1s than 0s}\}$

3 Pushdown Automata

Consider the following context-free grammar G with non-terminals S and A, start symbol S, and terminals "(", ")", and "0":

$$\begin{array}{rccc} S & \to & SA \mid \varepsilon \\ A & \to & AA \mid (S) \mid 0 \end{array}$$

- **a)** What are the eight shortest words produced by G?
- b) Context-free grammars can be ambiguous. Prove or disprove that G is unambiguous.
- c) Design a push-down automaton M that accepts the language L(G). If possible, make M deterministic.

4 Context Free or Not?

For the following languages, determine whether they are context free or not. Prove your claims!

- a) $L = \{w \# x \# y \# z \mid w, x, y, z \in \{a, b\}^* \text{ and } |w| = |z|, |x| = |y|\}$
- **b)** $L = \{w \# x \# y \# z \mid w, x, y, z \in \{a, b\}^* \text{ and } |w| = |y|, |x| = |z|\}$

5 Push Down Automata

For each of the following context free languages, draw a PDA that accepts L.

- a) $L = \{u \mid u \in \{0,1\}^* \text{ and } u^{reverse} = u\} = \{u \mid ``u \text{ is a palindrome''}\}\$
- **b)** $L = \{u \mid u \in \{0,1\}^* \text{ and } u^{reverse} \neq u\} = \{u \mid ``u \text{ is no palindrome}"\}$

6 Counter Automaton

A push-down automaton is basically a finite automaton augmented by a stack. Consider a finite automaton that (instead of a stack) has an additional *counter* C, i.e., a register that can hold a single integer of arbitrary size. Initially, C = 0. We call such an automaton a *Counter Automaton* M. M can only increment or decrement the counter, and test it for 0. Since theoretically, all possible data can be coded into one single integer, a counter automaton has unbounded memory. Further, let \mathcal{L}_{count} be the set of languages recognized by counter automata.

- a) Let \mathcal{L}_{reg} be the set of regular languages. Prove that $\mathcal{L}_{reg} \subseteq \mathcal{L}_{count}$.
- b) Prove that the opposite is not true, that is, $\mathcal{L}_{count} \not\subseteq \mathcal{L}_{reg}$. Do so by giving a language which is in \mathcal{L}_{count} , but not in \mathcal{L}_{reg} . Characterize (with words) the kind of languages a counter automaton can recognize, but a finite automaton cannot.
- c) Which automaton is stronger? A counter automaton or a push-down automaton? Explain your decision.