Discrete Event Systems

Exercise Sheet 3

1 Pumping Lemma Revisited

a) Determine whether the language $L=\left\{1^{n^{2}} \mid n \in \mathbb{N}\right\}$ is regular. Prove your claim!
b) Consider a regular language L and a pumping number p such that every word $u \in L$ can be written as $u=x y z$ with $|x y| \leq p$ and $|y| \geq 1$ such that $x y^{i} z \in L$ for all $i \geq 0$.
Can you use the pumping number p to determine the number of states of a minimal DFA accepting L ? What about the number of states of the corresponding NFA?

2 Context-Free Grammars

Give context-free grammars for the following languages over the alphabet $\Sigma=\{0,1\}$:
a) $L_{1}=\{w \mid$ the length of w is odd $\}$
b) $L_{2}=\{w \mid$ contains more 1 s than 0 s$\}$

3 Pushdown Automata

Consider the following context-free grammar G with non-terminals S and A, start symbol S, and terminals "(", ")", and " 0 ":

$$
\begin{aligned}
& S \quad \rightarrow \quad S A \mid \varepsilon \\
& A \quad \rightarrow \quad A A|(S)| 0
\end{aligned}
$$

a) What are the eight shortest words produced by G ?
b) Context-free grammars can be ambiguous. Prove or disprove that G is unambiguous.
c) Design a push-down automaton M that accepts the language $L(G)$. If possible, make M deterministic.

4 Context Free or Not?

For the following languages, determine whether they are context free or not. Prove your claims!
a) $L=\left\{w \# x \# y \# z \mid w, x, y, z \in\{a, b\}^{*}\right.$ and $\left.|w|=|z|,|x|=|y|\right\}$
b) $L=\left\{w \# x \# y \# z \mid w, x, y, z \in\{a, b\}^{*}\right.$ and $\left.|w|=|y|,|x|=|z|\right\}$

5 Push Down Automata

For each of the following context free languages, draw a PDA that accepts L.
a) $L=\left\{u \mid u \in\{0,1\}^{*}\right.$ and $\left.u^{\text {reverse }}=u\right\}=\{u \mid$ " u is a palindrome" $\}$
b) $L=\left\{u \mid u \in\{0,1\}^{*}\right.$ and $\left.u^{\text {reverse }} \neq u\right\}=\{u \mid$ " u is no palindrome" $\}$

6 Counter Automaton

A push-down automaton is basically a finite automaton augmented by a stack. Consider a finite automaton that (instead of a stack) has an additional counter C, i.e., a register that can hold a single integer of arbitrary size. Initially, $C=0$. We call such an automaton a Counter Automaton M. M can only increment or decrement the counter, and test it for 0 . Since theoretically, all possible data can be coded into one single integer, a counter automaton has unbounded memory. Further, let $\mathcal{L}_{\text {count }}$ be the set of languages recognized by counter automata.
a) Let $\mathcal{L}_{\text {reg }}$ be the set of regular languages. Prove that $\mathcal{L}_{\text {reg }} \subseteq \mathcal{L}_{\text {count }}$.
b) Prove that the opposite is not true, that is, $\mathcal{L}_{\text {count }} \nsubseteq \mathcal{L}_{\text {reg }}$. Do so by giving a language which is in $\mathcal{L}_{\text {count }}$, but not in $\mathcal{L}_{\text {reg }}$. Characterize (with words) the kind of languages a counter automaton can recognize, but a finite automaton cannot.
c) Which automaton is stronger? A counter automaton or a push-down automaton? Explain your decision.

