
Networked Systems Group (NSG)

HS 2016 Prof. L. Vanbever & A. El-Hassany, & M. Apostolaki.
based on Prof. R. Wattenhoffer’s material

Discrete Event Systems
Solution to Exercise Sheet 4

1 Designing Turing Machines

The proposed Turing machine decrements the value of a until a = 0. In each step, it adds a ‘1’
to the output:

1. Move the TM head to the right of a and place a $ sign. We will use this marker to return
to the LSB of a.

2. Look at the LSB of a. If it is ‘1’, we change it to 0 (transition between q1 and q3) and move
to the right. Then, we continue moving to the right until we hit a �, which is changed to
a ‘1’ (transition q4 to q5). Finally, we move back to the LSB of a.

3. If the LSB of a is ‘0’, we search for the first ‘1’ in a from the right (loop on q1 and transition
from q1 to q3).

3.1 If we find a ‘1’, we change it to ‘0’. While moving back to the $ symbol, we change all ‘0’
to ‘1’ (self-loop on q3). Then, we proceed as in point 2 after passing the $ symbol.

3.2 If we don’t find a ‘1’ in a at all (transition q1 to q6), we start the cleanup procedure:
Remove all 0 on the right of the $ symbol, and finally remove the $ symbol itself and move
to the right of u.

q0 q1 q3

q4q5

q6 q7 q8

{0|1}|R

�→ $|L

0|L

1→ 0|R

�|R

0→ 1|R

$|R

1|R
�→ 1|L

1|L

$|L

0→ �|R
$→ �|R

1|R

�|L

2 An Unsolvable Problem

a) It is surprisingly easy to prove that your boss is demanding too much. Assume a func-
tion halt(P: Program): boolean which takes a program P as a parameter and returns a
boolean value denoting whether P terminates or not.

Now consider the following program X which calls the halt() function with itself as an
argument just to do the contrary:

function X() {

if (halt(X))

while(true);

else

return;

}

Obviously, if halt(X) is true X will loop forever, and vice versa.

b) If the simulation stops we can definitively decide that the program does not contain an
endless loop. However, while the simulation is still running, we do not know whether it will
finish in the next two seconds or run forever. Put differently: There is no upper bound on
the execution time of the simulation after which we can be sure that the program contains
an endless loop.

c) As we have seen, it is not possible to predict whether a general program terminates or not.
However, under certain constraints we can solve the halting problem all the same. For
example, consider a restricted language with only one form of a loop (no recursion etc.):

for (init; end; inc) {...}

where init, end and inc are constants in Z. The loop starts with the value init and adds
inc to init in every round until this sum exceeds end if end > 0 or until it falls below
end if end < 0. Obviously, there is a simple way to decide whether a program written in
this language terminates: For every loop, we check whether sgn(inc) = sgn(end), where
sgn(·) is the algebraic sign. If not, the program contains an endless loop (unless init itself
already fulfills the termination criterion which is also easy to verify).

2

