
Distributed
    Computing 

HS 2016 Prof. R. Wattenhofer / S. Brandt, P. Khanchandani, D. Melnyk, T. Ulrich

Discrete Event Systems
Solution to Exercise Sheet 7

1 Bin Packing

The algorithm mentioned in the exercise has a competitive ratio of 2. The proof works as follows:
First we show that the algorithm requires at most twice as many bins as the optimal offline
algorithm. Consider the bins in the order in which they were closed. Consider two consecutive
bins i and i + 1. Assume that the algorithm fills bin i up to level x ≤ 1. The next item (the
first to be put into bin i + 1) must be of size larger than 1− x. Otherwise, the algorithm would
not have opened a new bin. Therefore, any two consecutive bins must have total size strictly
more than 1. Hence, considering the total size of all the items, we conclude the following: If the
algorithm uses k bins, then the optimal offline algorithm requires strictly more than k/2 bins if
k is even, and strictly more than (k− 1)/2 bins if k is odd. In both cases the number of bins the
optimal offline algorithm uses is larger than k/2.

Second, we show that there are indeed input sequences where the ratio of the used number
of bins of our algorithm and the optimal offline algorithm gets arbitrarily close to 2. Consider
the following input sequence:

I =

(
1,

2

n
, 1,

2

n
, 1,

2

n
, . . . , 1,

2

n

)
︸ ︷︷ ︸

n items

.

Clearly, our algorithm Alg needs to open a new bin after every item. That is, the number of
bins opened by Alg is costAlg(I) = n. On the other hand, the optimal algorithm Opt can put
all n/2 objects of size 1 into one bin each and all the n/2 objects of size 2/n together into one
bin. Hence, costOpt(I) = n/2 + 1. The competitive ratio r for input sequence I is therefore

r ≥ costAlg(I)

costOpt(I)
=

n
n
2 + 1

=
2n

n + 2
.

For large n, this tends to 2.

2 Paging

a) (i) Lfu (Least Frequently Used): Replace the page that has been requested the smallest
number of times since entering the fast memory.

The Lfu strategy is not constant-competitive. Consider the following request sequence:

I = (p1, p1, p2, p2, p3, p4, p3, p4, p3, . . .)

In this sequence, Lfu keeps on exchanging p3 and p4 ad infinitum, while the optimum
can keep these two pages in the cache.



(ii) Lifo (Last-in/First-out): Replace the page most recently moved to the cache.

For the same reason as Lfu, the Lifo strategy is also not constant-competitive. Con-
sider the following request sequence:

I = (p1, p2, p3, p4, p3, p4, p3, . . .)

In this sequence, Lifo keeps on exchanging p3 and p4 ad forever. It is therefore not
constant-competitive.

(iii) Fifo (First-in/First-out): Replace the page that has been in the cache longest.

The Fifo strategy is 3-competitive.

Proof. Observe that on any consecutive input subsequence which contains three or
fewer distinct page references, Fifo incurs at most three page faults. Now, consider
a 3-phase partition of the input sequence I. A 3-phase partition is defined as follows:
Phase 0 is the empty sequence. For every i ≥ 1, phase i is the maximal sequence
following phase i − 1 that contains at most three distinct page requests; that is, if
phase i + 1 exists, its sequence begins with the fourth distinct page request since the
start of the i-th phase.

Next, we consider how both strategies perform on each 3-phase. For i = 1, Fifo
and Opt will not incur any faults, since the cache can be filled with all three values.
For any phase i ≥ 2, Fifo incurs at most three page faults, because it cannot fault
twice on the same page. It remains to show that Opt will incur at least one fault
on each sequence for i ≥ 2. Let q be the first request of phase i − 1. Consider the
input sequence starting with the second request of phase i − 1 up to and including
the first request of phase i. The optimal algorithm Opt can only have two additional
pages cached (on top of q), and there are three different requests in this sequence not
counting request q. Hence, Opt must incur at least one page fault in this sequence.

Combining the two bounds, we have

costFifo(I) ≤ 3 · costOpt(I).

A sequence for which Fifo actually yields three times as many page faults as Opt is
given by

I = (p1, p2, p3, p4, p1, p2, . . . ) .

(iv) Lru (Least Recently Used): When eviction is necessary, replace the page whose most
recent request was the earliest.

Like the Fifo strategy, Lru is 3-competitive. The reason is that (like Fifo), Lru
has the property that on any consecutive input subsequence containing three or fewer
distinct page references, it incurs at most three page faults. The remainder of the
proof is then equivalent to the Fifo case, including the worst-case input sequence.

(v) Fwf (Flush When Full): Whenever there is a page fault and there is no space left in
the cache, evict all pages currently in the cache.

The Fwf algorithm is also 3-competitive. Consider the first phase, i.e., the first
consecutive input subsequence containing three distinct page references. Clearly, Fwf
does not operate a flush. Now, consider the subsequent phase. In this phase, there
can be at most one flush and hence, three page faults. Similarly, in every subsequent
phase, there can be at most one flush and three page faults. From this observation,
the proof follows like in the Fifo case, again including the worst-case input sequence
for the Fifo algorithm.

b) We prove the following theorem:

Theorem. There exists no deterministic online paging algorithm Alg with a competitive
ratio better than 3.

2



Proof. Assume that there are four pages, p1, . . . , p4. We prove that there is an arbitrarily
long request sequence I for which |I| = costAlg(I) ≥ 3 · costOpt(I). Without loss of
generality, assume that Alg initially holds p1, p2, and p3 in its cache. We define a “cruel”
request sequence I = (r1, r2, r3, . . . ) inductively: r1 = p4, and ri+1 is defined to be the
unique page that is not in Alg’s cache just after serving the request sequence r1, . . . , ri.
In other words, the adversary always requests the one page that Alg does not have in its
cache. Clearly, I can be made arbitrarily long and Alg has a page fault on each request
in I, hence |I| = costAlg(I).

We now show that it is possible to serve every request sequence I with at most |I|/3 page
faults in the offline case. An offline algorithm knows the complete request sequence in
advance. Consider the 3-phase partition of any input sequence: the sequences of any two
consecutive phases i and i + 1 will differ by exactly one request value, since we can only
have four different requests. Thus, the offline algorithm will always be able to keep the
same two values in the cache for any pair of consecutive phases. This reduces the number
of faults to at most one in every 3-phase. Each 3-phase contains at least three elements,
otherwise it is not maximal. Hence, our offline algorithm has at most one page fault every
three requests.

Clearly, it holds that

costOpt(I) ≤ costNrl(I) ≤ |I|
3

=
costAlg(I)

3
,

which finishes the proof of the theorem.

3 Memory

a) Turn over every card once in n moves. Then collect all n pairs. This is 2–competitive.

b) There exists a (2n− 1)/n–competitive strategy and (2n− 1)/n–competitive is also a lower
bound for any deterministic strategy:

(i) No strategy can guarantee to collect all pairs in a solitaire Memory game in less than
2n − 1 moves: We can assume that if no uncollected pairs are known to the player,
then she will turn over a new card in the first step of her move. We can also assume
that if the first card has no known matching partner, that then the player will turn
over another unknown card as the second step of her move. Deviating from these rules
would not decrease the number of needed moves. In a similar fashion, we can assume
that if a pair of cards is known and not collected after a move, that the player will
collect them at the end – doing it at an earlier point would incur the same costs of
one move per pair.

The cards could be positioned in such a way, that the player will open the cards
in the following order:

(1, 2), (3, 1), (4, 2), (5, 3), . . . ,

(n− 2, n− 4), (n− 1, n− 3), (n, n− 2), (n, n− 1) .

From the first {(1, 2)} to the (n− 1)th move {(n, n− 2)}, the first card that is turned
over is always an unknown card that has no known matching partner. Therefore, the
only viable option is to turn over a second card during that move. From the second
to the (n − 1)th move, this reveals a card that has a known matching partner from
a previous move. Also in the first move, no pair is collected. Therefore, the player
needs at least (n− 1) moves where no pair is made. Since collecting the pairs needs n
additional moves at the end, each strategy needs at least (n− 1) + n = 2n− 1 moves
to finish collecting all pairs.

3



(ii) There exists a strategy that can guarantee to collect all pairs in a solitaire Memory
game in at most 2n− 1 moves. We use the following strategy: First the player turns
over (2n− 2) cards in (n− 1) moves. Due to the pigeonhole principle, the player now
knows the location of at least (n − 2) pairs (or has collected some of them already),
since only two cards were not turned over yet. In the worst case, we can now collect
these (n−2) pairs with another (n−2) moves, needing (n−1)+(n−2) = 2n−3 moves
in total so far. The player now turns over one of the last two remaining cards. If the
players knows the location of the matching partner, she can collect this pair. Else,
since only one card was not turned over yet, this last card is the matching partner.
Since now only 2 cards are not collected on the table, they must be a pair. Adding
these two moves to the 2n− 3 previous moves results in total in 2n− 1 moves.

c) Assume that there are still i pairs left and let Xi be a random variable indicating the
number of moves until the next pair is found. After the first card has been picked, there
are still 2i−1 other cards on the table. So the probability to pick the matching card in the
current move is p = 1

2i−1 . As Xi is geometrically distributed with parameter p, we have

E[Xi] = 1
p = 2i− 1.

Let X be the number of moves to find all pairs and we have X =
∑n

i=1 Xi. By linearity of
expectation, we calculate the expected number of moves to find all pairs as

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =
n∑

i=1

(2i− 1) = n2 .

4


