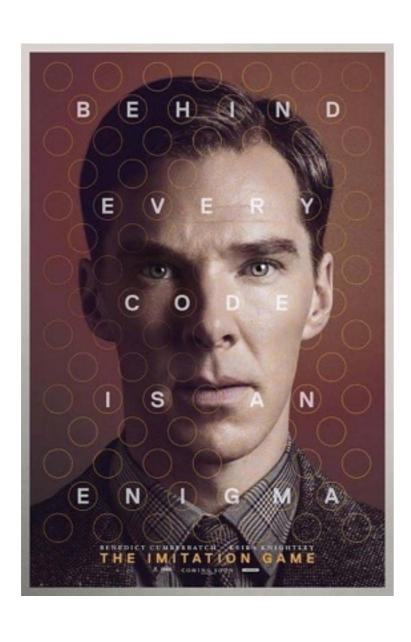
Automata & languages

A primer on the Theory of Computation



Laurent Vanbever

www.vanbever.eu

ETH Zürich (D-ITET)

October, 13 2016

Part 4 out of 5

Last week, we showed the equivalence of DFA, NFA and REX

is equivalent to

DFA × NFA

X

REX

We also looked at nonregular languages

Pumping lemma

If A is a regular language, then there exist a number p s.t.

Any string in A whose length is at least p can be divided into three pieces xyz s.t.

- $xy^iz \in A$, for each i≥0 and
- |y| > 0 and
- $|xy| \leq p$

To prove that a language *A* is not regular:

- Assume that A is regular
- Since A is regular, it must have a pumping length p
- Find one string *s* in *A* whose length is at least *p*
- For any split *s*=*xyz*,

 Show that you can not satisfy all three conditions
- 5 Conclude that *s* cannot be pumped

To prove that a language A is not regular:

- 1 Assume that A is regular
- 2 Since *A* is regular, it must have a pumping length *p*
- Find one string *s* in *A* whose length is at least *p*
- For any split *s*=*xyz*,
 Show that you can not satisfy all three conditions
- 5 Conclude that s cannot be pumped \longrightarrow A is not regular

This week is all about

Context-Free Languages

a superset of Regular Languages

CFG's: Proving Correctness

- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider again our grammar

$$G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$$

- We claim that $L(G) = L = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\},$ where $n_a(x)$ is the number of a's in x, and $n_b(x)$ is the number of b's.
- Proof: To prove that L = L(G) is to show both inclusions:
 - i. $L \subseteq L(G)$: Every string in L can be generated by G.
 - ii. $L \supseteq L(G)$: G only generate strings of L.

CFG's: Proving Correctness

- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider again our grammar

$$G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$$

- We claim that $L(G) = L = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\},$ where $n_a(x)$ is the number of a's in x, and $n_b(x)$ is the number of b's.
- *Proof*: To prove that L = L(G) is to show both inclusions:
 - i. $L \subseteq L(G)$: Every string in L can be generated by G.
 - ii. $L \supseteq L(G)$: G only generate strings of L.

Part *ii.* is easy (see why?), so we'll concentrate on part *i*.

- $L \subseteq L(G)$: Show that every string x with the same number of a's as b's is generated by G. Prove by induction on the length n = |x|.
- Base case: The empty string is derived by $S \rightarrow \varepsilon$
- Inductive hypothesis:

Assume that G generates all strings of equal number of a's and b's of (even) length up to n.

Consider any string of length n+2. There are essentially 4 possibilities:

- 1. awb
- 2. bwa
- *3. awa*
- 4. bwb

Inductive hypothesis:

Consider any string of length n+2. There are essentially 4 possibilities:

- 1. awb
- 2. bwa
- *3.* awa
- 4. bwb

Given $S \Rightarrow^* w$, awb and bwa are generated from w using the rules $S \rightarrow aSb$ and $S \rightarrow bSa$ (induction hypothesis)

Inductive hypothesis:

Now, consider a string like awa. For it to be in L requires that w isn't in L as w needs to have 2 more b's than a's.

- Split awa as follows: $_0a_1\dots _{-1}a_0$ where the subscripts after a prefix v of awa denotes $n_a(v)-n_b(v)$
- Think of this as counting starting from 0.
 Each a adds 1. Each b subtracts 1. At the end, we should be at 0.

Somewhere along the string (in w), the counter crosses 0 (more b's)

Inductive hypothesis:

Somewhere along the string (in w), the counter crosses 0:

$$\begin{array}{cccc}
& u & & \\
& a_1 \dots & & \\
& & a_1 \dots & \\
& & & & \\
& & & & v
\end{array}$$
 with $x, y \in \{a, b\}$

- u and v have an equal number of a's and b's and are shorter than n.
- Given $S \Rightarrow^* u$ and $S \Rightarrow^* v$, the rule $S \xrightarrow{} SS$ generates awa = uv (induction hypothesis)
- The same argument applies for strings like bwb

Designing Context-Free Grammars

- As for regular languages this is a creative process.
- However, if the grammar is the union of simpler grammars, you can design the simpler grammars (with starting symbols S_1 , S_2), and then add a new starting symbol/production $S \rightarrow S_1 \mid S_2$.

Designing Context-Free Grammars

- As for regular languages this is a creative process.
- However, if the grammar is the union of simpler grammars, you can design the simpler grammars (with starting symbols S_1 , S_2), and then add a new starting symbol/production $S \rightarrow S_1 \mid S_2$.
- If the CFG happens to be regular, you can first design the FA, introduce a variable/production for each state of the FA, and then add a rule x → ay to the CFG if δ(x,a) = y is in the FA. If a state x is accepting in FA then add x → ε to CFG. The start symbol of the CFG is the start state in the FA.
- There are quite a few other tricks. Try yourself...

Push-Down Automata (PDA)

- Finite automata where the machine interpretation of regular languages.
- Push-Down Automaton are the machine interpretation for grammars.
- The problem of finite automata was that they couldn't handle languages that needed some sort of unbounded memory... something that could be implemented easily by a single (unbounded) integer register!
- Example: To recognize the language $L = \{0^n1^n \mid n \ge 0\}$, all you need is to count how many 0's you have seen so far...
- Push-Down Automata allow even more than a register: a full stack!

Recursive Algorithms and Stacks

- A stack allows the following basic operations
 - Push, pushing a new element on the top of the stack.
 - Pop, removing the top element from the stack (if there is one).
 - Peek, checking the top element without removing it.
- General Principle in Programming:
 Any recursive algorithm can be turned into a non-recursive one using a stack and a while-loop which exits only when stack is empty.

Recursive Algorithms and Stacks

- A stack allows the following basic operations
 - Push, pushing a new element on the top of the stack.
 - Pop, removing the top element from the stack (if there is one).
 - Peek, checking the top element without removing it.
- General Principle in Programming:
 Any recursive algorithm can be turned into a non-recursive one using a stack and a while-loop which exits only when stack is empty.
- It seems that with a stack at our fingertips we can even recognize palindromes! Yoo-hoo!
 - Palindromes are generated by the grammar S $\rightarrow \varepsilon$ | aSa | bSb.
 - Let's simplify for the moment and look at S → # | aSa | bSb.

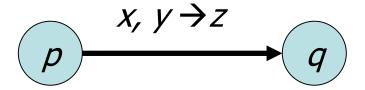
From CFG's to Stack Machines

- The CFG S → # | aSa | bSb describes palindromes containing exactly 1 #.
- Question: Using a stack, how can we recognize such strings?

PDA's à la Sipser

- To aid analysis, theoretical stack machines restrict the allowable operations. Each text-book author has his/her own version.
- Sipser's machines are especially simple:
 - Push/Pop rolled into a single operation: replace top stack symbol.
 - In particular, replacing top by ε is a pop.
- No intrinsic way to test for empty stack.
 - Instead often push a special symbol ("\$") as the very first operation!
- Epsilon's used to increase functionality
 - result in default nondeterministic machines.

Sipser's PDA Version



If at state *p* and next input is *x* and top stack is *y*, then go to state *q* and replace *y* by *z* on stack.

- $x = \varepsilon$: ignore input, don't read
- $-y = \varepsilon$: ignore top of stack and push z
- $-z=\varepsilon$: pop y

In addition, push "\$" initially to detect the empty stack.

PDA: Formal Definition

- Definition: A pushdown automaton (PDA) is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$:
 - -Q, Σ , and q_0 , and F are defined as for an FA.
 - Γ is the stack alphabet.
 - δ is as follows: Given a state p, an input symbol x and a stack symbol y, $\delta(p,x,y)$ returns all (q,z) where q is a target state and z a stack replacement for y.

$$\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$$

PDA Exercises

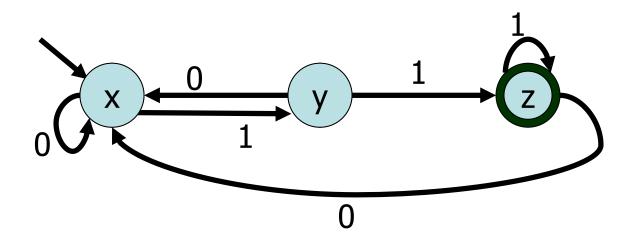
• Draw the PDA $\{a^ib^jc^k \mid i,j,k \ge 0 \text{ and } i=j \text{ or } i=k\}$

• Draw the PDA for $L = \{x \in \{a,e\}^* \mid n_a(x) = 2n_e(x)\}$

Model Robustness

- The class of regular languages was quite robust
 - Allows multiple ways for defining languages (automaton vs. regexp)
 - Slight perturbations of model do not change result (non-determinism)
- The class of context free languages is also robust:
 you can use either PDA's or CFG's to describe the languages in the class.
- However, it is less robust than regular languages when it comes to slight perturbations of the model:
 - Smaller classes
 - Right-linear grammars
 - Deterministic PDA's
 - Larger classes
 - Context Sensitive Grammars

Right Linear Grammars vs. Regular Languages



- The DFA above can be simulated by the grammar
 - $-x \rightarrow 0x \mid 1y$
 - $-y \rightarrow 0x \mid 1z$
 - $-z \rightarrow 0x \mid 1z \mid \varepsilon$
- Definition: A right-linear grammar is a CFG such that every production is of the form $A \rightarrow uB$, or $A \rightarrow u$ where u is a terminal string, and A,B are variables.

Right Linear Grammars vs. Regular Languages

• Theorem: If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA then there is a right-linear grammar G(M) which generates the same language as M.

• *Proof*:

- Variables are the states: V = Q
- Start symbol is start state: $S = q_0$
- Same alphabet of terminals Σ
- A transition $q_1 \rightarrow a \rightarrow q_2$ becomes the production $q_1 \rightarrow aq_2$
- For each transition, $q_1 \rightarrow aq_2$ where q_2 is an accept state, add $q_1 \rightarrow a$ to the grammar
- Homework: Show that the reverse holds. Right-linear grammar can be converted to a FSA. This implies that RL ≈ Right-linear CFL.

Right Linear Grammars vs. Regular Languages

• Theorem: If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA then there is a right-linear grammar G(M) which generates the same language as M.

• Proof:

- Variables are the states: V = Q
- Start symbol is start state: $S = q_0$
- Same alphabet of terminals Σ
- A transition $q_1 \rightarrow a \rightarrow q_2$ becomes the production $q_1 \rightarrow aq_2$
- For each transition, $q_1 \rightarrow aq_2$ where q_2 is an accept state, add $q_1 \rightarrow a$ to the grammar
- Homework: Show that the reverse holds. Right-linear grammar can be converted to a FSA. This implies that RL ≈ Right-linear CFL.
- Question: Can every CFG be converted into a right-linear grammar?

Chomsky Normal Form

- Chomsky came up with an especially simple type of context free grammars which is able to capture all context free languages, the Chomsky normal form (CNF).
- Chomsky's grammatical form is particularly useful when one wants to prove certain facts about context free languages. This is because assuming a much more restrictive kind of grammar can often make it easier to prove that the generated language has whatever property you are interested in.
- Noam Chomsky, linguist at MIT, creator of the Chomsky hierarchy, a classification of formal languages. Chomsky is also widely known for his left-wing political views and his criticism of the foreign policy of U.S. government.

Chomsky Normal Form

 Definition: A CFG is said to be in Chomsky Normal Form if every rule in the grammar has one of the following forms:

```
- S \rightarrow \varepsilon (\varepsilon for epsilon's sake only)

- A \rightarrow BC (dyadic variable productions)

- A \rightarrow a (unit terminal productions)
```

where S is the start variable, A,B,C are variables and a is a terminal.

 Thus epsilons may only appear on the right hand side of the start symbol and other rights are either 2 variables or a single terminal.

CFG → CNF

- Converting a general grammar into Chomsky Normal Form works in four steps:
- Ensure that the start variable doesn't appear on the right hand side of any rule.
- 2. Remove all epsilon productions, except from start variable.
- 3. Remove unit variable productions of the form $A \rightarrow B$ where A and B are variables.
- 4. Add variables and dyadic variable rules to replace any longer nondyadic or non-variable productions

CFG → CNF: Example

$$S \rightarrow \varepsilon |a|b|aSa|bSb$$

1. No start variable on right hand side

$$S' \to S$$

$$S \to \varepsilon |a|b|aSa|bSb$$

2. Only start state is allowed to have ϵ

$$S' \to S | \varepsilon$$

 $S \to \varepsilon | a | b | a S a | b S b | a a | b b$

3. Remove unit variable productions of the form $A \rightarrow B$.

$$S' \rightarrow S|\varepsilon|a|b|aSa|bSb|aa|bb$$

 $S \rightarrow a|b|aSa|bSb|aa|bb$

CFG → CNF: Example continued

$$S' \rightarrow S|\epsilon|a|b|aSa|bSb|aa|bb$$

 $S \rightarrow a|b|aSa|bSb|aa|bb$

 Add variables and dyadic variable rules to replace any longer productions.

$$S' \rightarrow \varepsilon |a|b|aSa|bSb|aa|bb|AB|CD|AA|CC$$

 $S \rightarrow a|b|aSa|bSb|aa|bb|AB|CD|AA|CC$
 $A \rightarrow a$
 $B \rightarrow SA$
 $C \rightarrow b$
 $D \rightarrow SC$

$CFG \rightarrow PDA$

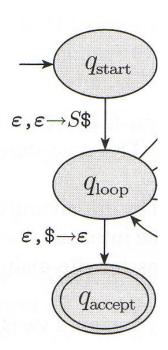
- CFG's can be converted into PDA's.
- In "NFA → REX" it was useful to consider GNFA's as a middle stage.
 Similarly, it's useful to consider Generalized PDA's here.
- A Generalized PDA (GPDA) is like a PDA, except it allows the top stack symbol to be replaced by a whole string, not just a single character or the empty string. It is easy to convert a GPDA's back to PDA's by changing each compound push into a sequence of simple pushes.

CFG → GPDA Recipe

- Push the marker symbol \$ and the start symbol S on the stack.
- 2. Repeat the following steps forever
 - a. If the top of the stack is the variable symbol A, nondeterministically select a rule of A, and substitute A by the string on the right-hand-side of the rule.
 - b. If the top of the stack is a terminal symbol *a*, then read the next symbol from the input and compare it to *a*. If they match, continue. If they do not match reject this branch of the execution.

$CFG \rightarrow GPDA \rightarrow PDA$: Example

- $S \rightarrow aTb \mid b$
- T \rightarrow Ta | ϵ



CFG → PDA: Now you try!

• Convert the grammar $S \rightarrow \varepsilon |a| b |aSa| bSb$

$PDA \rightarrow CFG$

- To convert PDA's to CFG's we'll need to simulate the stack inside the productions.
- Unfortunately, in contrast to our previous transitions, this is not quite as constructive. We will therefore only state the theorem.
- Theorem: For each push-down automation there is a context-free grammar which accepts the same language.
- Corollary: PDA ≈ CFG.

Context Sensitive Grammars

An even more general form of grammars exists.
 In general, a non-context free grammar is one in which whole mixed variable/terminal substrings are replaced at a time.

For example with $\Sigma = \{a,b,c\}$ consider:

$$S \rightarrow \varepsilon \mid ASBC$$
 $aB \rightarrow ab$
 $A \rightarrow a$ $bB \rightarrow bb$
 $CB \rightarrow BC$ $bC \rightarrow bc$
 $cC \rightarrow cc$

What language is generated by this non-context-free grammar?

 When length of LHS always ≤ length of RHS (plus some other minor restrictions), these general grammars are called context sensitive.

Are all languages context-free?

- Design a CFG (or PDA) for the following languages:
- L = { w \in {0,1,2}* | there are k 0's, k 1's, and k 2's for $k \ge 0$ }
- L = { $w \in \{0,1,2\}^*$ | with |0| = |1| or |0| = |2| or |1| = |2| }
- $L = \{ 0^k 1^k 2^k \mid k \ge 0 \}$

Tandem Pumping

- Analogous to regular languages there is a pumping lemma for context free languages. The idea is that you can pump a context free language at two places (but not more).
- Theorem: Given a context free language L, there is a number p (tandem-pumping number) such that any string in L of length $\geq p$ is tandem-pumpable within a substring of length p. In particular, for all $w \in L$ with $|w| \geq p$ we we can write:

```
- w = uvxyz

- |vy| \ge 1 (pumpable areas are non-empty)

- |vxy| \le p (pumping inside length-p portion)

- uv^ixy^iz \in L for all i \ge 0 (tandem-pump v and y)
```

If there is no such p the language is not context-free.

Proving Non-Context Freeness: Example

- $L = \{1^n 0^n 1^n 0^n \mid n \text{ is non-negative } \}$
- Let's try $w = 1^p 0^p 1^p 0^p$. Clearly $w \in L$ and $|w| \ge p$.
- With |vxy| ≤ p, there are only three places where the "sliding window"
 vxy could be:

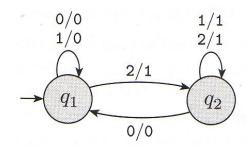
 In all three cases, pumping up such a case would only change the number of 0s and 1s in that part and not in the other two parts; this violates the language definition.

Proving Non-Context Freeness: You try!

- $L = \{x = y + z \mid x, y, \text{ and } z \text{ are binary bit-strings satisfying the equation } \}$
- The hard part is to come up with a word which cannot be pumped, such as...

Transducers

- Definition: A finite state transducer (FST) is a type of finite automaton whose output is a string and not just accept or reject.
- Each transition of an FST is labeled with two symbols, one designating the input symbol for that transition (as for automata), and the other designating the output symbol.
 - We allow ϵ as output symbol if no symbol should be added to the string.
- The figure on the right shows an example of a FST operating on the input alphabet {0,1,2} and the output alphabet {0,1}



• Exercise: Can you design a transducer that produces the inverted bitstring of the input string (e.g. $01001 \rightarrow 10110$)?