Crash course – Petri nets
General definitions
Coverability

Xiaoxi He
Clicker time!

Discrete Event Systems

Roger P. Wattenhofer, Lothar Thiele, Laurent Vanbever

Learning objective

Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design
• The marking (2,3,0,0,0) is reachable.
• The marking (1,0,1,3,0) is reachable.
• The marking (1,2,0,1,0) is reachable.
• The firing sequence (t2, t1, t4, t3, t5, t1, t4) is valid.
Basic Petri net syntax

- Is it a valid Petri Net?
- Which transitions are activated?
- What is the marking after firing?
Basic Petri net syntax

- Is it a valid Petri Net?
- Which transitions are activated?
- What is the marking after firing?
Basic definitions

- State \Leftrightarrow Marking (Do not confuse states and places !!!)
- **Pre** and **Post** sets for transitions:
 - Pre set: $\bullet t := \{ p \mid (p, t) \in F \}$
 - Post set: $t \bullet := \{ p \mid (t, p) \in F \}$

(likewise for places)

- Upstream W^- and Downstream W^+ incidence matrices:

$$W^- = \begin{bmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{bmatrix} \quad \text{Places} \quad W^- (i, j) = \begin{cases}
 w & \text{if } p_i \in \bullet t_j \text{ and has weight } w \\
 0 & \text{otherwise}
\end{cases}$$

- Incidence matrix: $A = W^+ - W^-$
Basic definitions

- **Token game**

 From a marking M_0, for a firing sequence vector T, the marking obtained is

 \[M = M_0 + A \cdot T \]

 \[
 \begin{bmatrix}
 3 \\
 0 \\
 0 \\
 2
 \end{bmatrix}
 =
 \begin{bmatrix}
 2 \\
 0 \\
 1 \\
 0
 \end{bmatrix}
 +
 \begin{bmatrix}
 -2 & 1 & 1 \\
 1 & -1 & 0 \\
 1 & 0 & -1 \\
 0 & -2 & 2
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 0 \\
 1
 \end{bmatrix}
 \]

 BEWARE! All firing sequences are not necessarily allowed by the net...

 1 firing of t_3
Coverability Tree

- **Question:** What token distributions are reachable?
- **Problem:** There might be infinitely many reachable markings, but we must avoid an infinite tree.
- **Solution:** Introduce a special symbol ω to denote an arbitrary number of tokens:

```
M_0 = [1 0 0]
M_1 = [0 0 1]
M_3 = [1 \omega 0]
M_4 = [0 \omega 1]
M_5 = [0 \omega 1]
M_6 = [1 \omega 0]
```

- **deadlock**
- **old**
Question: What token distributions are reachable?

Problem: There might be infinitely many reachable markings, but we must avoid an infinite tree.

Solution: Introduce a special symbol ω to denote an arbitrary number of tokens:

\[
\begin{align*}
M_0 &= [1 \ 0 \ 0] \\
M_1 &= [0 \ 0 \ 1] \\
M_3 &= [1 \ \omega \ 0] \\
M_4 &= [0 \ \omega \ 1]
\end{align*}
\]

A deadlock occurs when the system cannot transition to a new state.

\[
t1 \quad t3 \\
deadlock
\]
Crash course – Petri nets
General definitions
Coverability

Your turn to work!
1 Structural Properties of Petri Nets and Token Game

(a) $t_5 = \{p_5, p_9\}$, \hspace{1cm} $t_5 \bullet = \{p_6\}$

$\bullet t_8 = \{p_8\}$, \hspace{1cm} $t_8 \bullet = \{p_{10}, p_5\}$

$\bullet p_3 = \{t_2\}$, \hspace{1cm} $p_3 \bullet = \{t_3\}$
1 Structural Properties of Petri Nets and Token Game

a) \(t_5 = \{p_5, p_9\} \), \(t_5\bullet = \{p_6\} \)
\(t_8 = \{p_8\} \), \(t_8\bullet = \{p_{10}, p_5\} \)
\(p_3 = \{t_2\} \), \(p_3\bullet = \{t_3\} \)

b) T1 fires...
1 Structural Properties of Petri Nets and Token Game

a) \(t_5 = \{p_5, p_9\}, \quad t_5\bullet = \{p_6\} \)
\(t_8 = \{p_8\}, \quad t_8\bullet = \{p_{10}, p_5\} \)
\(p_3 = \{t_2\}, \quad p_3\bullet = \{t_3\} \)

b) \(t_1 \) fires... \(t_2 \) fires...
 \(\rightarrow t_5 \) is enabled
 \(\rightarrow t_3 \) is not

c) 3 tokens in the bet after \(t_2 \) has been fired.

d)
2 Basic Properties of Petri Nets

- Bounded for any $k \leq 1$
- Deadlock-free if $k \geq 1$
3 Identifying a deadlock

a) Example of blocking sequence:
\[t_{A0} t_{B0} \]

Blocking marking

\[M_0 = (1,0,0,1,1,1,0,0) \]

\[(0,1,0,0,1,1,0,0) \]

\[(0,0,1,0,0,1,0,0) \]

\[(0,1,0,0,0,0,1,0) \]

\[(1,0,0,1,0,0,1,0) \]

\[(1,0,0,0,0,0,1,0) \]

\[(1,0,0,0,0,0,0,1) \]
3 Identifying a deadlock

b) Just read it from the graph

\[
W^+ = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}, \quad \quad W^- = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
A = W^+ - W^- = \begin{bmatrix}
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
1 & -1 & -1 & 0 & 0 & 0 \\
-1 & 1 & 0 & -1 & 1 \\
0 & -1 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
\end{bmatrix}
\]
3 Identifying a deadlock

b) Just read it from the graph

\[
W^+ = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}, \quad W^- = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
A = W^+ - W^- = \begin{bmatrix}
-1 & 0 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & -1 & 1 \\
0 & -1 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{bmatrix}
\]
3 Identifying a deadlock

b) Just read it from the graph

\[
A = W^+ - W^- = \begin{bmatrix}
-1 & 0 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & -1 & 1 \\
0 & -1 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
\end{bmatrix}
\]

\[
M_{\text{deadlock}} = M_0 + A = \begin{bmatrix}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
\end{bmatrix} + \begin{bmatrix}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
3 Identifying a deadlock

c) Proving marking is blocking

\[
W^- = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
M_{\text{deadlock}} = \begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
\end{bmatrix}
\]

Do not cover any column
3 Identifying a deadlock

d) Correct by adding a semaphore
4 From mutual exclusion to starvation

a) Derive the net from the specification

1. One process executes its program.
4 From mutual exclusion to starvation

a) Derive the net from the specification

1. One process executes its program.
2. In order to enter the critical section, the mutex value must be 1 (i.e. the mutex is available).
4 From mutual exclusion to starvation

a) Derive the net from the specification

1. One process executes its program.
2. In order to enter the critical section, the mutex value must be 1 (i.e. the mutex is available).
3. If this is the case, the process sets the mutex to 0 and executes its critical section.
4 From mutual exclusion to starvation

a) Derive the net from the specification

1. One process executes its program.
2. In order to enter the critical section, the mutex value must be 1 (i.e. the mutex is available).
3. If this is the case, the process sets the mutex to 0 and executes its critical section.
4. When it is done, it resets the mutex to 1 and enters an uncritical section.
5. It loops back to start.
4 From mutual exclusion to starvation

a) Derive the net from the specification

1. One process executes its program.
2. In order to enter the critical section, the mutex value must be 1 (i.e. the mutex is available).
3. If this is the case, the process sets the mutex to 0 and executes its critical section.
4. When it is done, it resets the mutex to 1 and enters an uncritical section.
5. It loops back to start.
4 From mutual exclusion to starvation

b) How to avoid starvation?

Add a semaphore/resource kind of place
→ Consumed by one process
→ Generated by the other process

To avoid starvation in both direction, you need two of such places

The total number of tokens in those places in the maximal number of possible execution in a row.
4 From mutual exclusion to starvation

b) How to avoid starvation? Add a semaphore/resource kind of place
 → Consumed by one process → Generated by the other process
 To avoid starvation in both direction, you need two of such places
 The total number of tokens in those places in the maximal number of
 possible execution in a row.
4 From mutual exclusion to starvation

c) What’s the problem with this?

→ If B does not executes anymore, A is forced to stop as well. And vice versa.

What would you propose as specification?

For example:

→ “If both processes want to access the resource, they get it in turns.”

d) **Bonus** Try to implement this specification in your Petri Net...
5 Coverability tree and graph

a) Coverability tree

\[M_0 = (1,0,0) \]
5 Coverability tree and graph

a) Coverability tree

\[M_0 = (1,0,0) \xrightarrow{t_1} (1,\omega,0) \text{ new} \]
5 Coverability tree and graph

a) Coverability tree

\[M_0 = (1,0,0) \xrightarrow{t_1} (1,\omega,0) \xrightarrow{t_2} \text{new}(1,\omega,0) \xrightarrow{t_3} (1,\omega,\omega) \text{ new} \]

\[
\begin{align*}
(1,\omega,0) & \quad \text{old} \\
1 & \\
(1,\omega,0) & \quad \text{new}
\end{align*}
\]
5 Coverability tree and graph

a) Coverability tree

\[
M_0 = (1,0,0) \xrightarrow{t_1} (1,\omega,0) \xrightarrow{t_2} (1,\omega,\omega) \xrightarrow{t_3} (1,\omega,0) \xrightarrow{t_1} \ldots \xrightarrow{t_3} (1,\omega,\omega) \xrightarrow{t_2} \text{Done!}
\]
5 Coverability tree and graph

b) Coverability graph

\[M_0 = (1,0,0) \xrightarrow{t_1} (1,\omega,0) \xrightarrow{t_2} (1,\omega,0) \xrightarrow{t_3} (1,\omega,\omega) \]

\[M_0 = (1,0,0) \xrightarrow{t_1} (1,\omega,0) \xrightarrow{t_3} (1,\omega,\omega) \]

\[M_0 = (1,0,0) \xrightarrow{t_1} (1,\omega,0) \xrightarrow{t_2, t_3} (1,\omega,\omega) \xrightarrow{t_1, t_2, t_3} \]
6 Reachability Analysis for Petri Nets

a) Not feasible in general because infinite number of states
 → When do we stop if looking for a non-reachable marking?
 Coverability? Always finite!
 → Can only prove non-reachability in the general case.

b) Is $s = (101, 99, 4)$ reachable?
 → Start with necessary condition using the incidence matrix: $\exists F, s = s_0 + A \cdot F$?

\[
A = \begin{pmatrix}
-1 & 1 & 0 & 2 \\
1 & -1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}
\]

\[
\begin{pmatrix}
-1 & 1 & 0 & 2 \\
1 & -1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix} \cdot \begin{pmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4
\end{pmatrix} = \begin{pmatrix}100 \\
99 \\
4
\end{pmatrix} = s - s_0
\]
6 Reachability Analysis for Petri Nets

b) Is \(s = (101, 99, 4) \) reachable?

\[
\rightarrow \quad \text{Start with necessary condition using the incidence matrix: } \exists F, s = s_0 + A \cdot F ?
\]

\[
\begin{pmatrix}
-1 & 1 & 0 & 2 \\
1 & -1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4
\end{pmatrix}
= \begin{pmatrix}
100 \\
99 \\
4
\end{pmatrix}
= s - s_0
\]

No systematic approach... Look at the net and try it out.

\(F_1 = (203, 0, 203, 203) \Rightarrow s_1 = (204, 0, 0) \)

\(F_2 = (103, 0, 0, 0) \Rightarrow s_2 = (101, 103, 0) \)

\(F_3 = (0, 0, 4, 0) \Rightarrow s_3 = (101, 99, 4) = s \)
Crash course – Petri nets

Introduction

See you next week!