
Networked Systems Group (NSG)

HS 2017 Prof. L. Vanbever & A. El-Hassany, & M. Apostolaki.
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Exercise Sheet 4

1 Pumping Lemma Revisited

a) Determine whether the language L = {1n2 | n ∈ N} is regular. Prove your claim!

b) Consider a regular language L and a pumping number p such that every word u ∈ L can
be written as u = xyz with |xy| ≤ p and |y| ≥ 1 such that xyiz ∈ L for all i ≥ 0.

Can you use the pumping number p to determine the number of states of a minimal DFA
accepting L? What about the number of states of the corresponding NFA?

2 Context Free or Not?

For the following languages, determine whether they are context free or not. Prove your claims!

a) L = {w#x#y#z | w, x, y, z ∈ {a, b}∗ and |w| = |z|, |x| = |y|}

b) L = {w#x#y#z | w, x, y, z ∈ {a, b}∗ and |w| = |y|, |x| = |z|}

3 Push Down Automata

For each of the following context free languages, draw a PDA that accepts L.

a) L = {u | u ∈ {0, 1}∗ and ureverse = u} = {u | “u is a palindrome”}

b) L = {u | u ∈ {0, 1}∗ and ureverse 6= u} = {u | “u is no palindrome”}

4 Counter Automaton

A push-down automaton is basically a finite automaton augmented by a stack. Consider a finite
automaton that (instead of a stack) has an additional counter C, i.e., a register that can hold a
single integer of arbitrary size. Initially, C = 0. We call such an automaton a Counter Automaton
M . M can only increment or decrement the counter, and test it for 0. Since theoretically, all
possible data can be coded into one single integer, a counter automaton has unbounded memory.
Further, let Lcount be the set of languages recognized by counter automata.

a) Let Lreg be the set of regular languages. Prove that Lreg ⊆ Lcount .

b) Prove that the opposite is not true, that is, Lcount * Lreg . Do so by giving a language
which is in Lcount , but not in Lreg . Characterize (with words) the kind of languages a
counter automaton can recognize, but a finite automaton cannot.

c) Which automaton is stronger? A counter automaton or a push-down automaton? Explain
your decision.

5 Designing Turing Machines

Alice is very happy because she was accepted for an internship at Tintel, one of the world’s
leading processor manufacturers. Unfortunately, she has only attended the famous DES lecture
during her studies at ETH and knows nothing about electronic circuits. Therefore, she wants to
solve her first assignment using a Turing Machine – please assist her:

Alice is asked to implement a binary to unary converter. This converter takes a number a in
binary (alphabet {0, 1}) and converts it to a unary number u (alphabet {1}). Initially, the TM
head points to the MSB of a. At the end, the head should point to the right-most digit of u.

Provide a plain text description of your TM as well as a finite state machine controlling the
tape head. Use the following notation for transitions:

‘α→ β | γ’ read α from the tape at the current position, then write a β and finally
move left if γ = L or move right if γ = R.

‘α | γ’ abbreviation for transitions of the form α → α | γ (these transitions do
not modify the content of the tape).

Hint: The number n in unary representation consists of n ones. Also, you might want to
extend the alphabet Γ to put temporary symbols on the tape.

6 An Unsolvable Problem

It’s the first day of your internship at the software firm Bug Inc., and your boss calls you to
his office in order to explain your task for the next three months. He says that many clients
complain that the programs of Bug Inc. often contain faulty loops that never terminate. In order
to prevent such errors in future, you are asked to implement a program that may check whether
a given program will halt on all possible inputs or not.

a) Try to find a proof that convinces your boss that this is not possible for general programs.

Hint: The proof works by contradiction. Assume a procedure halt(P:Program):boolean

that takes a program P and decides whether P halts on all possible inputs or not. Now
construct a program X that terminates if halt(X) is false and loops endlessly if halt(X)

is true, which yields the desired contradiction.

b) Your boss still disagrees and proposes the following method: halt(Y) simply simulates the
execution of program Y. If the program terminates it returns true, and if it loops it returns
false. Where is the problem of this approach?

c) Your boss is finally convinced but argues that your proof is a very special case that hardly
reflects reality. Are there assumptions under which it is always possible to check whether
a program halts or not?

2

